

- 1. Circle all answers that are correct: The set of all natural numbers is the same size as
- a) The set of all complex numbers
- b) The set of all positive rational numbers

c) The set of all integers

- d) The set of all points on a line
- 2. Multiplying by the complex number $2cis\frac{5\pi}{6}$ has the same effect as multiplying by the matrix: (give simplified answers) $\begin{bmatrix} -\frac{13}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} = -\sqrt{3} + i$

3. The set of complex numbers a + bi (where a and b are real numbers not both zero) under the operation of multiplication is isomorphic to the set of matrices of the form:

- 4. Write a matrix that represents each of the following transformations. Give exact answers. Simplify sines and cosines when possible.
- A) a rotation of -45°

B) reflection over the y axis x = 0

C) reflects over the line y = -x

D) reflects over the line $\theta = 27^{\circ}$

5. State the matrix that does B and then A (from question 4 above):

6. Describe what each matrix does to the plane WITH A SINGLE TRANSFORMATION. Be specific with regards to magnitudes.

a)
$$\begin{bmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{bmatrix}$$
 b)
$$\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$

b)
$$\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} \end{bmatrix}$$

c)
$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 5 \end{array} \right]$$

rotates point 170° (3) reflect 0= 45°

d)
$$\begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

d)
$$\begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$
 e) $\begin{bmatrix} 2/3 & 2/3 \\ 5/3 & 5/3 \end{bmatrix}$

shear y by -3 etmes

translates a point on the line y= \(\frac{5}{2}\times

7. Decompose the matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ as the product of four 2x2 matrices $R \cdot S \cdot T \cdot U$ in

that order. (two shears and two stretches). Assume all entries are positive. Identify

$$R = \begin{bmatrix} A & O \\ O & I \end{bmatrix} \qquad S = \begin{bmatrix} I & O \\ C & I \end{bmatrix} \qquad T = \begin{bmatrix} I & O \\ O & A \end{bmatrix} \qquad U = \begin{bmatrix} I & \frac{\pi}{A} \\ O & I \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & O \\ C & I \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & A \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & \frac{2}{A} \\ 0 & 1 \end{bmatrix}$$

8. Use the geometry of complex numbers and Pascal's triangle to write a formula for $\cos 6\theta$.

- 9. Consider the dihedral (reflection/rotation) group of a regular octagon.
- a) How many elements are there in this group?6

c) Write two reflection matrices that could generate the same group.

10. a) Name a matrix that would shear the matrix $\begin{bmatrix} 3 & 5 \\ 2 & -4 \end{bmatrix}$ so that the first column vector would be on the **x** axis.

b) What matrix would ROTATE the above matrix so that the first column vector would be along the **y axis**? Simplify and write without trig functions for full credit.

- 11. Write a 3 x 3 matrix that would
- a) translate 5 units in the x and -4 in the y (in 2-d) and THEN dilate by 6.

b) rotate the unit cube (represented by the 3 x 3 identity matrix) 90° from the first octant to the 5th octant (right below it)

12. a) Consider the two complex numbers $z_1 = cis10^\circ$ and $z_2 = cis70^\circ$.

Below accurately plot $z_1 \cdot z_2$ to the left and $z_1 + z_2$ to the right on the unit circles provided.

COSTO+COS(0+:(5TN70+STN10

b) z_1 generates a group under multiplication. What Geometric group is it isomorphic to? 36-900 rotation

c) Explain clearly why the group in part "b" above is actually a group (remember there are 4 requirements to be a group).

Has an identity V Will come back to origin after full #s of rotation v Will hit all points of geometric shape

d) Would z_1 and z_2 generate a group under addition? Justify your answer.

No, because 0 is not part of the group and that is the identity.