15

013/14 Student Lost in Space Wow

Unit 4 Exam Analysis 2013/14 Student Lo. 3-D graphing and different types of coordinates

1. Identify the following 3-d surfaces by name: [3 each]

a)
$$2x + 3z = -16$$

b)
$$y = 3z^2$$

c)
$$2y^2 - 2x^2 + 5z = 2$$

d)
$$(x-3)^2 + (y+5)^2 = z^2$$

e)
$$x^2 + y^2 + 5z^2 = 22$$

f)
$$2x^2 - y^2 + 3z^2 = 15$$

2. Sketch the following in 3 – d [4 each]

c)
$$\frac{z^2}{9} + \frac{y^2}{16} - \frac{x^2}{5} = -1$$
 $\frac{x^2}{5} - \frac{y^2}{5} - \frac{z^2}{9} = 1$

a) plane

b) parabolic cylinder hypels (2) c) elliptic parabolard

d)elliptic cone

e) ellipsoid

1) hyperboloid of I sheet

b)
$$-3x + 5y - 3z = 15$$

d)
$$\frac{z^2}{9} + \frac{x^2}{16} - \frac{y}{4} = 1$$

e) For "c" above state the domain (all possible x values) $-\infty < x \le -\sqrt{5}$, $\sqrt{5} \le x < \infty$

3. Which one of the points below (in polar coordinates) does *not* map to the same point

- 4. The graph of $r = -3\csc\theta$ can best be described as a... (circle one)
 - (a) horizontal line
- (b) vertical line
- (c) circle

(d) line with negative slope

(e) line with positive slope

$$V = -\frac{3}{\sin \theta} \quad y = -3$$

5. Convert the point $\left(6, \frac{4\pi}{3}\right)$ from polar coordinates to rectangular coordinates. (circle one)

6. The polar function $r = 2 \tan \theta \sec \theta$ is a parabola. Convert it to simplified rectangular form. [4]

$$V = \frac{2 + an\theta}{\cos \theta} \qquad V(08\theta = 2(\frac{\sin \theta}{\cos \theta})$$

$$V^{2}(082\theta = 2r\sin \theta)$$

- 7. Clearly describe the shape, size and orientation of the intersection of the two 3-d surfaces below. Be very specific. [4]
- $x^2 + y^2 + z^2 = 120$ and

$$x^2 + y^2 - z^2 = 100$$

are two cricles with centers

of (0,0,50) and (0,0,-50), and both circles have a radius of 200 Both circles are also to the x-y-plane.

8. Find the geometric points of intersections of the two curves: $r = \sin \theta$ and $r = 1 - \sin \theta$ (graphs given below). Leave answers in the form (r, θ) . [5]

9. Write an equation for the following two polar functions: [4 each]

b) Along what angle is the first petal (past 0 degrees) in the rose above right? [2]

- 10. Write the equation of a plane with the following intercepts: (3, 0, 0) (0, 2, 0) and (0,
- 0, 5). [3]

12. The Cartesian coordinates for point P are (a, a, a) where "a" is a positive constant.

a) Write P in cylindrical coordinates (in terms of "a"). [3]

$$Y = \sqrt{\alpha^2 + \alpha^2} = \sqrt{2}$$

 $\theta = \tan^2(1) = \frac{\pi}{4}$
 $z = 0$

b) Write P in spherical coordinates. (also in terms of "a") [3]

$$P = \sqrt{a^{2}+a^{2}+a^{2}} = a\sqrt{3}$$

 $0 = tam^{-1}(1) = \frac{\pi}{4}$
 $0 = tam^{-1} = tam^{-$

13. a) Write the following spherical point $Q = (\rho, \theta, \phi) = (5, \frac{7\pi}{6}, \frac{\pi}{6})$ as a rectangular point (x, y, z) [3]

b) Sketch point Q, as accurately as possible, labeling (ρ, θ, ϕ) [3]

