No Calculators on this test. But no reason to simplify your answers either.

Questions 1-4 are Multiple Choice. Circle the best answer. [3 each]

1. Which of the following expressions are equivalent to entry $\binom{17}{8}$ in Pascal's Triangle?

I.
$$\binom{16}{7} + \binom{16}{8}$$

II.
$$\binom{18}{9} - \binom{17}{9}$$

- a) I only
- b) I and II only
- c) I and III only
- d) II and III only
- e) I, II, and III.
- 2. $\frac{(n+2)!-n!}{(n+1)!}$ can be factored into a rational function in the form $\frac{ax^2+bx+c}{dx+e}$. Find the sum a+b+c+d+e.
 - a) 8

b) 3

c) 7

d) 9

e) 5

3. As n gets bigger and bigger (goes towards infinity), then the following sum will approach what value?

$$\sum_{k=1}^{n} 3(\frac{2}{5})^{k}$$

a) 7

b) 7.5

c) 2

d) 5

e) 1.2

4. Use telescoping to derive a compact expression for the following sum of even-numbered Fibonacci terms:

$$F_{14} + F_{16} + \dots + F_{200}$$

- a) $F_{201} F_{13}$ b) $F_{202} F_{12}$ c) F_{203}
- d) F_{202}
- e) $F_{202} F_{13}$

5. The number 28 can be found in 7 locations in Pascal's Triangle (and the negative Pascal's Triangle). 2 such locations are $\binom{28}{1}$ and $\binom{28}{27}$ but those are boring. Express 28 as 4 **different** binomial coefficients. [4]

6. Write the following sum using sigma notation. Then actually calculate the sum (in terms of "m") [5]

$$5+11+17+23+....(6m-19)$$

Sigma:______ Sum:____

7. Find the coefficient for the $x^{10}y^{25}z^{15}$ term in the expansion of $(3x+2y+z)^{50}$ [4]

8. Consider the "triangle of 6's" below. The last row shown is the 4th row. The first term of the nth row can be found by the formula. $F(n) = 3n^2 - 3n + 6$

- a) Find an expression for the middle term in the nth row (where n is an odd number). [3]
- b) Write a compact expression for the product of the first n terms in the triangle above (6)(12)(18)...... using factorials and/or exponents. Your answer will have n in it. [2]

9. The method of induction can be used to prove the following statement:

"The expression a^2-1 is divisible by 8 for all positive odd numbers a"

Properly right out the first three steps in a potential induction proof. YOU DO NOT NEED TO DO THE ENTIRE PROOF!!! Please properly label all 3 steps. [5]

Questions 9-13 are Multiple Choice (Again!?) [3 each]

10. How many ways can you split 7 students into 2 groups, where each group has at least one student?

a) 7!

b) 128

c) 126

d) 63

e) 64

11. Which diagram represents $P(A' \cup B)$?

a)

c)

d)

e)

12. Which is logically equivalent to $P(A \cup B')'$?

a) $P(A' \cap B)$

b) $P(A \cap B')$

c) $P(A' \cap B)'$ d) $P(A' \cap B')$

e) $P(A \cap B)$

13. How many distinct 3-letter arrangements can you make from the letters in the word "COLTS"?

a) 33

b) 24

c) 60

d) 120

e) 30

14. How many distinct 3-letter arrangements can you make from the letters in the word "CALLS"?

a) 33

b) 24

c) 60

d) 120

e) 30

More Free Response

15. 7 students randomly arrange themselves into a circle. What is the probability that Ed is standing directly between Edd and Eddy? (obviously assuming that Ed, Edd, and Eddy are 3 of the 7 students) [3]

16. Jar A contains 2 white and 2 blue marbles. Jar B contains 1 white and	2 blue marbles.
a) A random jar is selected, and then a random marble is taken out of the blue? [3]	jar. What is the probability that the marble is
b) A random jar is selected, and then a random marble is taken out of the selected, given that the marble is blue? [3]	jar. What is the probability that Jar A was
c) A random marble is selected out of Jar A and placed into Jar B. Then a rathe probability that a blue marble was taken out of Jar A, given that the final	andom marble is selected from Jar B. What is all marble is blue? [3]
17. I have 2 nickels and 3 quarters in my pocket.	
a) If I randomly choose 2 of the coins, what is the probability that I will sele	ect one nickel and one quarter? [3]
b) If I randomly choose 2 of the coins, what is the expected value of the two	o coins together? [4]

18. In order to gain access to the exclusive We Love Ones Club, you must show your love for 1's by rolling 6 fair, 6-sided dice, and getting at least 2 of dice to show a "1". What is the probability that you will gain access? [4]		
19. What is the probability of being dealt a 7 card hand in poker (assume a 52 card deck) and getting a Full House (3 of one denomination, 2 of another and 2 "other" cards)? [4]		