No Calculators on this test. But no reason to simplify your answers either.

Questions 1-4 are Multiple Choice. Circle the best answer. [3 each]

- (3)+(4)+(5)=(6)
- 1. Which of the following expressions are equivalent to entry $\binom{17}{8}$ in Pascal's Triangle?
- I. $\binom{16}{7} + \binom{16}{8}$ II. $\binom{18}{9} \binom{17}{9}$ III. $\binom{8}{0} + \binom{9}{1} + \binom{10}{2} + \dots + \binom{16}{8}$
- a) I only
- b) I and II only
- c) I and III only
- d) II and III only
- e) I, II, and III.

$$\binom{17}{8} + \binom{17}{9} = \binom{18}{9}$$

- $\binom{17}{9} + \binom{17}{9} = \binom{18}{9}$ $\binom{13}{9} + \binom{18}{9} = \binom{18}{9}$ $\binom{18}{9} + \binom{18}{9} = \binom{18}{9}$
 - $\binom{n+1}{let1} \binom{n}{let1} = \binom{n}{le}$
- 2. $\frac{(n+2)!-n!}{(n+1)!}$ can be factored into a rational function in the form $\frac{ax^2+bx+c}{dx+e}$. Find the sum a+b+c+d+e.
 - a) 8

b) 3

- c) 7
- d) 9

e) 5

$$\frac{N!((n+2)(n+1)-1)}{(n+1)!}$$

- $\frac{N! \left((n+2)(n+1) 1 \right)}{(n+1)!} = \frac{(n+2)(n+1) 1}{n+1} = \frac{n^2 + 3n + 1}{n+1}$
- 3. As n gets bigger and bigger (goes towards infinity), then the following sum will approach what value?

 $\sum_{k=1}^{n} 3(\frac{2}{5})^{k}$ $\sum_{k=1}^{n} 3(\frac{2}{5})^{k}$ $\sum_{k=1}^{n} 3(\frac{2}{5})^{k}$ $\sum_{k=1}^{n} 3(\frac{2}{5})^{k}$

$$\sum_{k=1}^{n} 3(\frac{2}{5})^{k}$$

a) 7

- b) 7.5
- (c) 2

d) 5

e) 1.2

3.= +3.(2)2

- 4. Use telescoping to derive a compact expression for the following sum of even-numbered Fibonacci terms:

 $F_{14} + F_{16} + \dots + F_{200}$

F13-F13+E17-F11+ ... + F201 - F1ree

- a) $F_{201} F_{13}$
- b) $F_{202} F_{12}$ c) F_{203}
- d) F_{202}

6. Write the following sum using sigma notation. Then actually calculate the sum (in terms of "m") [5]

$$5+11+17+23+....(6m-19)$$

$$\sum_{n=1}^{m} 6n - 19 \rightarrow \sum_{n=1}^{m-3} 6(m+3) - 19 = \sum_{n=1}^{m-3} (m-2) - (m-3)$$

$$= 3(m-3)(m-2) - (m-3)$$

$$= (m-3)(3m-7)$$
Sigma: $3m^2 - 16m + 24$

$$= 3m^2 - 9m - 7m + 24$$

7. Find the coefficient for the $x^{10}y^{25}z^{15}$ term in the expansion of $(3x+2y+z)^{50}$ [4]

8. Consider the "triangle of 6's" below. The last row shown is the 4th row. The first term of the nth row can be found by the formula. $F(n) = 3n^2 - 3n + 6$

a) Find an expression for the middle term in the nth row (where n is an odd number). [3]

b) Write a compact expression for the product of the first n terms in the triangle above (6)(12)(18)..... using factorials and/or exponents. Your answer will have n in it. [2]

9. The method of induction can be used to prove the following statement:

"The expression a^2-1 is divisible by 8 for all positive odd numbers a"

Properly right out the first three steps in a potential induction proof. YOU DO NOT NEED TO DO THE ENTIRE PROOF!!! Please properly label all 3 steps. [5]

(a) b means a divisible by b

10.	How many w	vavs can vou	split 7 student	s into 2 groups	where each gr	roup has at I	east one student?
10.	TIOVV III GITY V	dy 5 cuit y cu	Spire / Studelin	S IIILO Z SI OUPS	, WIICIC Cacil Si	loup has at I	cast one student:

a) 7!

- b) 128
- c) 126
- d) 63

e) 64

27-1=63

11. Which diagram represents $P(A' \cup B)$?

a)

b)

c)

d)

e)

12. Which is logically equivalent to $P(A \cup B')'$?

- a) $P(A' \cap B)$
- b) $P(A \cap B')$ c) $P(A' \cap B)'$
 - d) $P(A' \cap B')$ e) $P(A \cap B)$

13. How many distinct 3-letter arrangements can you make from the letters in the word "COLTS"?

a) 33

b) 24

- c) 60 d) 120
- e) 30

14. How many distinct 3-letter arrangements can you make from the letters in the word "CALLS"?

- a) 33

c) 60

Cese 1= Only one L -> 4P3 = 4-3:2=24

- d) 120
- e) 30

More Free Response

Case 2: hoth L's -> 3.3 = 9

15. 7 students randomly arrange themselves into a circle. What is the probability that Ed is standing directly between Edd and Eddy? (obviously assuming that Ed, Edd, and Eddy are 3 of the 7 students) [3]

- 16. Jar A contains 2 white and 2 blue marbles. Jar B contains 1 white and 2 blue marbles.
- a) A random jar is selected, and then a random marble is taken out of the jar. What is the probability that the marble is blue? [3]

$$\frac{1}{2} \cdot \frac{2}{4} + \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{2} \left(\frac{1}{2} + \frac{2}{3} \right) = \frac{1}{2} \left(\frac{7}{6} \right) = \boxed{\frac{7}{12}}$$

b) A random jar is selected, and then a random marble is taken out of the jar. What is the probability that Jar A was selected, given that the marble is blue? [3]

$$\frac{\frac{2}{4}}{\frac{2}{4} + \frac{2}{3}} = \frac{6}{6 + 8} = \frac{6}{14} = \frac{2}{3}$$

c) A random marble is selected out of Jar A and placed into Jar B. Then a random marble is selected from Jar B. What is the probability that a blue marble was taken out of Jar A, given that the final marble is blue? [3]

Since P(blue merble taken) = P(White merble taken),
$$P = \frac{3}{4} + \frac{3}{2} = \frac{3}{4} + \frac{1}{2}$$

- 17. I have 2 nickels and 3 quarters in my pocket.
- a) If I randomly choose 2 of the coins, what is the probability that I will select one nickel and one quarter? [3]

$$\frac{2.3}{\binom{5}{1}} = \frac{6}{5.4} = \frac{12}{5.4} = \frac{3}{5}$$

$$\frac{1 - \frac{4}{60} = 0.0}{5} = 0.0$$

b) If I randomly choose 2 of the coins, what is the expected value of the two coins together? [4]

2 nucleis:
$$\frac{1}{10}$$
 2 quartes: $\frac{3}{10}$ nuclei + $9:\frac{6}{10}$
 $\frac{1}{10} \cdot 10$ + $\frac{3}{10} \cdot 50$ + $\frac{6}{10} \cdot 30 = 1 + 15 + 18 = 344$

5 + 5

5 + 5

5 + 5

5 + 5

18. In order to gain access to the exclusive We Love Ones Club, you must show your love for 1's by rolling 6 fair, 6-sided dice, and getting at least 2 of dice to show a "1". What is the probability that you will gain access? [4]

$$P(72 \text{ dice}) = 1 - P(1 \text{ dice}) - P(0 \text{ dice}) = 1 - {\binom{6}{5}} {\binom{5}{6}}^{5} - {\binom{5}{6}}^{6}$$

$$= \left[1 - {\left(\frac{5}{6}\right)}^{5} - {\left(\frac{5}{6}\right)}^{6}\right]$$

19. What is the probability of being dealt a 7 card hand in poker (assume a 52 card deck) and getting a Full House (3 of one denomination, 2 of another and 2 "other" cards)? [4]

3 Card denom. 3 Card to exclude 2 card denom. 2 card include remaining 2.

13.4.12.(4).(44.43/2-11.(4).12)

(52)

(52)

For remaining 2 cards, we subtract 11-(2)-2 tounds
overcoming when the remaining 2 cards have the

Same denomination (11 dernows left, (4)-to choose 2 conts

- to count them at - weight since they will be counted

- twice)