PART 1: Polar and 3D graphing

For problems 1-8, match each of the 3-d curves with their name. Each letter may be used more than once, or not at all. [2 pts each]

A) plane

- B) hyperboloid of one sheet
- C) hyperboloid of two sheets

- D) elliptic paraboloid
- E) elliptic cone

F) ellipsoid

G) hyperbolic paraboloid (saddle)

H) A different curve, not listed in A-G

1.
$$-5x + y^2 - 2z^2 = 10$$

$$2. -x^2 + y^2 - 4z^2 = 12$$

3.
$$3x^2 + 3y^2 - 5z^2 = 0$$

4.
$$x + 2(y + 3)^2 + 4z^2 = 28$$

5.
$$-5x + y - 2z = 10$$

$$6. -x^2 - y^2 - 4z^2 = 12$$

7.
$$3x^2 + 3y^2 - 5z^2 = 11$$

8.
$$x = z$$

- 9. Consider the graph of $r = 3 2 \sin\theta$. Circle ALL of the statements below that are true. [6]
 - I. It is a limacon
- II. It has a dimple
- III. It's symmetric about the x axis

- IV. It's symmetric about the y axis V. It's max r value is 5 VI. It has an inner loop
- 10. Which of the following is an equation of a rose curve with 10 petals? (circle 1 answer)
 - a) $r = 5\cos(10\theta)$

- b) $r = 5\cos(5\theta)$
- c) $r = 5\sin(5\theta)$

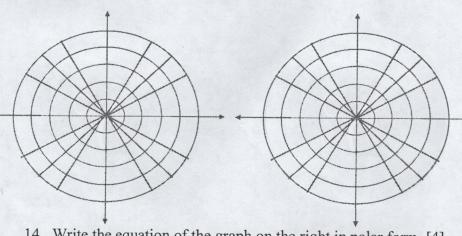
d) $r = 5\sin(10\theta)$

- e) None of these
- 11. The traces of a hyperboloid of 2 sheets are: (circle 1 answer) [3]
 - a) two hyperbolas and one parabola
- b) one hyperbola and two parabolas
- c) two hyperbolas and one ellipse
- d) one hyperbola and two ellipses

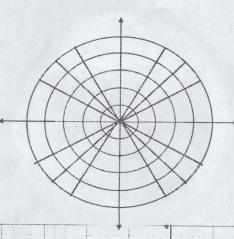
e) none of these

Polar and 3D Free Response:

12. Sketch the cylindrical point $(r, \theta, z) = \left(1, -\frac{\pi}{6}, -1\right)$ and then convert it into spherical coordinates. [4] Rough Sketch:


 $(\rho,\theta,\phi)=$

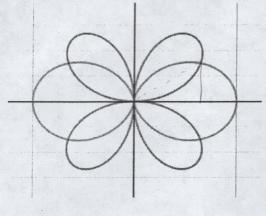
13. Quickly but accurately graph each polar curve below. [3 pts each]


a)
$$r = 2\sin 3\theta$$

b)
$$r = 4 - \cos \theta$$

c)
$$r^2 = 9\sin 2\theta$$

14. Write the equation of the graph on the right in polar form. [4]



15. Convert $x^2 + y^2 = 2\sqrt{x^2 + y^2} - 2y$ to **polar** form, and then identify the shape by its most specific name. [4]

Polar form:

Name:

16. The curves $r = 2\cos^2\theta$ and $r = \sqrt{3}\sin 2\theta$ (graphed below) cross 5 times. Find two of the intersection points and write them in polar form. Show the algebra that leads to your answer for full credit. [5]

point 1

point 2

17. Any ellipsoid can be written in the form $\frac{(x-a)^2}{d} + \frac{(y-b)^2}{e} + \frac{(z-c)^2}{f} = 1.$

Create an ellipsoid that has its center at (1, 0, 0) and x-intercepts 4 and -2. Also make it have y-intercepts ± 5 , and pass through the point (3,0,1). [4]

PART 2: Vectors and Parametric Equations

- 18. **Multiple Choice:** The graph of the set of parametric equations $x(t) = \cos t$
 - $x(t) = \cos t$ $y(t) = 3 - \sin^2 t$ is a _____. [3]

- a) circle
- b) ellipse
- c) parabola
- d) hyperbola
- e) spiral

- 19. Vector **a** is drawn below. Draw and label another vector **b** such that... [4]
 - a) $a \times b$ would have a direction **up** perpendicular out of this piece of paper.
 - b) The scalar projection $proj_b a < 0$

20. Find the equation of the plane, in standard $Ax+By+Cz+D=0$ form, that cocollinear points: [6]	n standard $Ax+By+Cz+D=0$ form, that contains the following 3 non-
	(2, 0, 3) (3, -1, 1) and (0, 4, 4)

21. Grayson is launching a grapefruit off the top of a building. The position (in feet) of the grapefruit after t seconds is given by the set of parametric equations:

$$x(t) = 40t\sqrt{3}$$
$$y(t) = 40t - 16t^2 + 70$$

Answer the following series of short answer questions about this scenario. [8]

- a) True or False: The grapefruit is launched from an initial height of 70 feet off the ground. _____
- b) The grapefruit was launched at a velocity of _____f/s at an angle of _____ degrees
- c) After 1 second, the grapefruit is at a height of ______ feet.
- d) The 2nd time the grapefruit will be 70 feet off the ground is at _____ seconds.

22. Consider the two vectors $\mathbf{r} = <6, 8, 0>$ and $\mathbf{s} = <2, 2, -1>$ Fill in the blanks below either with $<, >, =$ or NEI (not enough information) [2/2/2/4]
a) r·s 28
b) The angle between the two vectors 60 degrees
c) $scalar proj_s r s $
d) The area of the parallelogram formed by the two vectors 10 square units
e) Now, using the same vectors \mathbf{r} and \mathbf{s} , calculate the distance from the point (-3, -2, 1) to the plane formed by vectors \mathbf{r} , \mathbf{s} and the origin.
23. Name a plane (in standard form) perpendicular to the plane $3x - 5y + 2z = 20$. Then using words and math, convince me that your answer is correct. Many answers are possible. [4]
Your plane
Your argument:

24. Consider line L: $\langle x, y, z \rangle = \langle -2, 5, 1 \rangle + \langle 1, 2, -4 \rangle t$

a) Is the point (98, 205, -350) on line L? Justify your answer. [3]

Yes or no: _____

Justification:

b) Line L above intersects this new line $\langle x, y, z \rangle = \langle 2, -2, 27 \rangle + \langle 3, 1, 2 \rangle t$ Find the point of intersection of the two lines. [3]

 $(x,y,z) = \underline{\hspace{1cm}}$