Analysis H – Deggeller / Gleason / Hahn
Limits of Sequences and Series, Quiz 1
No Calculators!

See Jack, see Jane, sequence.	. Now see	
		Period:

Score:	/	20

- 1. Given the sequence: $a_n = \left\{\frac{3n^2+2}{n^2}\right\}$
 - a) [2 pt] The sequence converges to _____
 - b) [2 pts] Finish the sentence: We can show the convergence of part (a) above because for all neighborhoods, no matter how small, we can find a natural number M value such that...
 - c) [3 pts] If the neighborhood has a value of E = 0.1, find the natural number value of M from part (b).
- 2. Tell whether each statement is True or False. [1 pts each]
 - a) If a sequence does not converge, it must diverge.
 - b) If a sequence is bounded above and below, it must converge. _____
 - c) If a sequence is bounded below and everywhere decreasing, it must converge. _____
 - d) If it can be shown that for n > 8, all the terms of a_n are greater than n, the sequence $\{a_n\}$ must diverge.
 - e) ALL sequences that converge are bounded below.
- 3. Given the sequence: $a_n = \left\{\frac{2n}{n+1}\right\}$
 - a) [3 pts] Show that the sequence is bounded above.

b) [3 pts] Show that the sequence is everywhere increasing.

c) [2 pts] What can you conclude from parts (a) and (b) together?