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Limits of Sequences and Series, Quiz 1 ’ Period: _
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1. Given the sequence: a, = { = } i L—
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a) [2 pt] The sequence converges to 2

b) [2 pts] Finish the sentence: We can show the convergence of part (a) above because for all neighborhoods, no matter
how small, we can find a natural number M value such that...
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c) [3 pts] If the neighborhood has a value of E = 0.1, find the natural number value of M from part (b).
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2. Tell whether each statement is True or False. [1 pts each] g
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a) If asequence does not converge, it must diverge. _ I
b) If a sequence is bounded above and below, it must converge. T:/
c¢) If asequence is bounded below and everywhere decreasing, it must converge. |

d) Ifit can be shown that for n > 8, all the terms of a, are greater than n, the sequence {an} must diverge.
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e) ALL sequences that converge are bounded below. l
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3. Given the sequence: a,, = {m}

a) [3 pts] Show that the sequence is bounded above.
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b) [3 pts] Show that the sequence is everywhere increasmg.

2i54) a2 L BRea T 8 ) 8
iSRS e e / —in(n+2) = Inrn R - 2 3
(V\f(\)-(»’ Pl ) S b 4 " — Hin
ntl) (rA ) (’\“2_) (V(A \)
& 2 ®
" .L,/'—** ) 1]
(n42)(n+)) O [ S&/\\,( \ 'T)./ A > O]
o 4
c) [2 pts] What can you conclude from parts (a) and (b) together? gv 20~y 250
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