NO CALCULATOR 1. Consider the three groups: Group A: Hexagonal Prism under Rotation Group B: Hexagon under rotation Group C: The 6-post snap group For each group below, write the letter (A, B, or C) of its isomorphic group. If the given group is not isomorphic to any of the above groups, write "X". [2 pts each] - a) \_\_\_\_\_ is isomorphic to the group generated by $\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ under multiplication: - b) \_\_\_\_\_ is isomorphic to the dihedral (rotation/reflection) group D<sub>6</sub> - c) \_\_\_\_\_ is isomorphic to the group generated by a hexagonal pyramid under reflection - d) \_\_\_\_\_\_ is isomorphic to the group generated by a hexagon under reflection - e) \_\_\_\_\_ is isomorphic to the group generated by a hexagonal prism under reflection - f) \_\_\_\_\_ is isomorphic to the group generated by the multiplication group of $\left\{cis\frac{k\pi}{3}\right\}$ , where k is an integer. - 2. [3 pts] **Multiple Choice (circle the best answer):** In the graph shown to the right, the preimage points A and B were transformed into A' and B' through which simple transformations? - b) stretch followed by rotation - c) shear followed by rotation - d) rotation followed by a shear - e) shear followed by a reflection - 3. [3 pts] **Multiple Choice (circle the best answer):** In the Herreshoff method of matrix decomposition, we can take any invertible 2x2 transformation matrix and express it in terms of - a) stretches/reflections and dilations - b) rotations and dilations - c) dilations and shears - d) mapping to line and mapping to point - e) shears and stretches/reflections $$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$ - 4. [3 pts] Multiple Choice (circle the best answer): The two matrices given above represent transformations of the points in 3D coordinate space. Taken together, they generate a group that is isomorphic to \_\_\_\_\_\_. - a) triangle under reflection - b) square under reflection - c) cube under reflection - d) tetrahedron under reflection - e) cube under rotation - 5. [5 pts] For this question, circle ALL correct answers. The set of real numbers is the same size as: - a) the set of complex numbers - b) the set of rational numbers - c) the integers - d) the set of points in the plane - e) the set of two by two matrices. - 6. [5 pts] For this question, circle ALL correct answers. The matrices $\begin{bmatrix} cos\ 1 & -sin\ 1 \\ sin\ 1 & cos\ 1 \end{bmatrix}$ and $\begin{bmatrix} cos(-1) & -sin(-1) \\ sin(-1) & cos(-1) \end{bmatrix}$ (both in radians) generate a group under multiplication which is isomorphic to which group(s)? - a) rotation of the 360-gon - b) integer powers of 3 under multiplication - c) the complex numbers under multiplication - d) the integers under addition - e) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ under multiplication - 7. [5 pts] Show using matrix multiplication that you can produce a counterclockwise rotation of 120 degrees by a sequence of two particular reflections. For this problem, each element in each matrix should be a number (not in terms of sine or cosine). Under each matrix, use words to describe what that particular matrix does (be specific). Descriptions: | 8. | [4 pts] Write a single 3x3 mat | rix that could be used to | o map the plane | to the line $y = \frac{5}{2}x + 4$ | | | |-----------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------|-----| | | | | | | | | | | | | | | | | | 9.<br>to- | [4 pts] Name two sets that hav<br>one correspondence for the tw | re a countably infinite n<br>ro sets, to show that the | umber of elemer | nts. Then clearly show size. | and/or describe a on | ie- | | | Set 1: | | Set 2: | | | | | | One-to-One corresponder | nce: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 10. | [5 pts] Draw a specific elemen | t of the 8-post snap gro | up that has (or st | tate "not possible") | | | | | a) Period of 1. | b) Period of 3. | c) | Period of 12. | | | | | | | | | | | | | | | | | | | | | d) Decirel Can | | | | | | | | d) Period of 14. | e) Period of 15. | | | | | | | | | | | | | | | | | | | | | | sente | B pts] Wally thinks that the 4-p<br>nces to Wally explaining why h<br>'s misconception. | ost snap group is isomo<br>ne's wrong. No need to | orphic to the refle<br>be lengthy here | ection group of a square<br>- just give enough evide | e. Write a few<br>ence to disprove | | | | | | | | | | - 12. Consider the matrix $A = \begin{bmatrix} 3 & 5 \\ 7 & 2 \end{bmatrix}$ - a) [2 pts] Find detA. - b) [3 pts] Your answer from part (a) relates to the area of a parallelogram ABCD. What are the coordinates of the vertices of the parallelogram, and what is its area? Vertices: \_\_\_\_\_\_ Area: \_\_\_\_\_ c) [3 pts] Areas can't be negative, but your answer to part (a) is. Explain this discrepancy. In what cases would the determinant give you a "negative area"? 13. [4 pts] Consider a kite (K) with vertices at (-3,0) (3,0) (0,2) and (0,-5). If you were to transform K using the transformation matrix $\begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix}$ , you would get a line segment. Find the endpoints of the line segment. 14. [4 pts] On the same axis, graph the image of the triangle below under an x shear of 3. Be as accurate as possible 15. [6 pts] Use the decomposition method taught in class to explain what the matrix $M = \begin{bmatrix} 3 & 2 \\ 4 & 4 \end{bmatrix}$ does. Clearly show your work and report your answer using words. | M | does | the | foll | lowing, | in | order | | |---|------|-----|------|---------|----|-------|--| |---|------|-----|------|---------|----|-------|--| | 1 | 2 | - | | | |---|---|-------|---|--| | T | / | 4 | 1 | | | | - | <br>- | + | | | | | | - | | 16. [6 pts] The circle below is a unit circle. On the coordinate axis, graph (and label) the complex numbers a, b, and c such that the given information holds true. Given: $$|a| = 1.2$$ $$Arg(a) = \frac{5\pi}{6}$$ $$|b| = 1$$ $$c = a^2 - b$$