Analysis H – Deggeller / Gleason / Hahn	A Geometric Approach	to Matriur.	Timply Herber
GAtM Exam 2019 – [80 points]	Period:		
NO CALCULATOR 80		H	4)
1. Consider the three groups:		^	
Group A: Hexagonal Prism under Rotation	n		
Group B: Hexagon under rotation	_	-	Δ
Group C: The 6-post snap group			
For each group below, write the letter (A, B, or C) any of the above groups, write "X". [2 pts each]	of its isomorphic group of $\begin{bmatrix} 1 & \sqrt{3} \end{bmatrix}$	o. If the given group	is not isomorphic to
any of the above groups, write "X". [2 pts each] a) is isomorphic to the group generated	by $\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ under r	nultiplication:	1
b) is isomorphic to the dihedral (rotation	n/reflection) group D ₆		HLHY
c) is isomorphic to the group generated	by a hexagonal pyram	d under reflection	w w
d) is isomorphic to the group generated	by a hexagon under re	flection	(1) dy
e) is isomorphic to the group generated	by a hexagonal prism	under reflection	
f) is isomorphic to the group generated	by the multiplication g	coup of $\left\{cis\frac{k\pi}{3}\right\}$, who	ere <i>k</i> is an integer.
	momently worth	ten	
, 2. [3 pts] Multiple Choice (circle the best answer): In the transformed into A' and B' through which simple transformed		ht, the preimage po	ints A and B were
a) dilation followed by rotation	B' ●		
b) stretch followed by rotation			
c) shear followed by rotation		В	A' •
d) rotation followed by a shear			Α
e) shear followed by a reflection			
3. [3 pts] Multiple Choice (circle the best answer): In the invertible 2x2 transformation matrix and express it in term		matrix decompositio	on, we can take any
a) stretches/reflections and dilations b)	rotations and dilation	s c) d	ilations and shears

(e) shears and stretches/reflections

d) mapping to line and mapping to point

- · 4. [3 pts] Multiple Choice (circle the best answer): The two matrices given above represent transformations of the points in 3D coordinate space. Taken together, they generate a group that is isomorphic to _
 - - triangle under reflection
- b) square under reflection
- c) cube under reflection

- etrahedron under reflection
- e) cube under rotation

- 5. [5 pts] For this question, circle ALL correct answers. The set of real numbers is the same size as:
 - a) the set of complex numbers
- b) the set of rational numbers
- c) the integers

- d) the set of points in the plane
- (e) the set of two by two matrices.
- 6. [5 pts] For this question, circle ALL correct answers. The matrices $\begin{bmatrix} cos \ 1 & -sin \ 1 \end{bmatrix}$ and $\begin{bmatrix} cos (-1) & -sin (-1) \ sin (-1) & cos (-1) \end{bmatrix}$ (both in radians) generate a group under multiplication which is isomorphic to which group(
 - a) rotation of the 360-gon

- by integer powers of 3 under multiplication
- c) the complex numbers under multiplication
- d) the integers under addition
- (e) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ under multiplication

biggest bottly (Bolivian)

- 7. [5 pts] Show using matrix multiplication that you can produce a counterclockwise rotation of 120 degrees by a sequence of two particular reflections. For this problem, each element in each matrix should be a number (not in terms of sine or cosine). Under each matrix, use words to describe what that particular matrix does (be specific).

$$\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
And 120° cm

Descriptions:

reflect over 0=60° reflect over + 9xis

8. [4 pts] Write a single 3x3 matrix that could be used to map the plane to the line $y = \frac{5}{2}x + 4$

9. [4 pts] Name two sets that have a countably infinite number of elements. Then clearly show and/or describe a oneto-one correspondence for the two sets, to show that they are the same size.

M (natural number) Set 2: 2M (even natural anabers)

One-to-One correspondence:

 $N \rightarrow X \longleftrightarrow 2X \in 2M$

- 10. [5 pts] Draw a specific element of the 8-post snap group that has (or state "not possible")...
 - a) Period of 1.

b) Period of 3.

c) Period of 12.

1111111

111111

1 14 1

- d) Period of 14.
- e) Period of 15.

possible

XX XXX

chair

11. [3 pts] Wally thinks that the 4-post snap group is isomorphic to the reflection group of a square. Write a few sentences to Wally explaining why he's wrong. No need to be lengthy here - just give enough evidence to disprove Wally's misconception.

the four post snap group has 4! = 24 elements, while the reflection group of a square D4 has 8 elements. Since the order are different, they must be not isomorphine

12.	Consider the matrix	A =	[3	51
			17	2]

a) [2 pts] Find detA.

nd detA.			A. PA
det	A =	[-29]	1 129

BIG MATRIX

b) [3 pts] Your answer from part (a) relates to the area of a parallelogram ABCD. What are the coordinates of the vertices of the parallelogram, and what is its area?

		(22)	150)	(09)
Vertices: _	(0,0)	(3,7)	(0,10)	, (0) 1/

Area: __ 29

c) [3 pts] Areas can't be negative, but your answer to part (a) is. Explain this discrepancy. In what cases would the determinant give you a "negative area"?

It is because of the order the verticer appear. It the matrix wer remote [53], the det would be +29. The

determinant gives a negative area, as a geometric interpretation, when
the first column is the hottom right point relative to the parallegant diagonal with
13. [4 pts] Consider a kite (K) with vertices at (-3,0) (3,0) (0,2) and (0,-5). If you were to transform K using the

transformation matrix $\begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix}$, you would get a line segment. Find the endpoints of the line segment.

$$\begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix} \begin{bmatrix} -3 & 3 & 0 & 0 \\ 0 & 0 & 2 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 3 & 6 & -15 \\ -12 & 12 & 24 & -60 \end{bmatrix}$$

(-15,60) and (6,24)

14. [4 pts] On the same axis, graph the image of the triangle below under an x shear of 3. Be as accurate as possible

Le Grande S.S. Grande Volder

15. [6 pts] Use the decomposition method taught in class to explain what the matrix $M = \begin{bmatrix} 3 & 2 \\ 4 & 4 \end{bmatrix}$ does.

- 16. [6 pts] The circle below is a unit circle. On the coordinate axis, graph (and label) the complex numbers a, b, and c such that the given information holds true.

Given:

$$|a| = 1.2$$

$$Arg(a) = \frac{5\pi}{6}$$

$$|b| = 1$$

$$c = a^2 - b$$

lake

1-2