halysis H -	Deggeller/Gleason/Tantod
	2-2019/20
[30 points]	

I'm Lost in Space:	
Per:	

1. Matching: Math each quadric surface below to its corresponding name. [2 pts each]

- A: Plane
- B: Hyperboloid of 1 Sheet
- C: Hyperboloid of 2 Sheets
- D: Ellipsoid

E: Elliptic Cone

F: Hyperbolic Paraboloid (saddle) G: Elliptic Paraboloid H: None of the Above

1.
$$x + y + z = 0$$

2.
$$x^2 - y^2 = z^2 - 8$$

1.
$$x + y + z = 0$$
 ____ 2. $x^2 - y^2 = z^2 - 8$ ____ 3. $x^2 + y^2 + z^2 = 8$ ____

4.
$$x - y^2 = z^2$$

4.
$$x - y^2 = z^2$$
 5. $x^2 - y^2 = z + 8$ 6. $x^2 + y^2 = z^2$

6.
$$x^2 + y^2 = z^2$$

2. Sketch a picture of, and write the equation for a circular cylinder with center: (1,2,3), and radius=10 that extends forever in the y direction. Note that this cylinder actually has infinite centers, so consider (1,2,3) just one of them. [5]

Sketch:

Equation: _____

3. Sketch a picture of, and name the following curve $x^2 + z^2 = y^2 - 36$ [5]

Sketch:

Name: _

5. The quadric surface $y^2 = x + z$ is surprisingly a parabolic cylinder. Use 3 different xy traces (3 different values for z) to explore what it might look like, and draw a sketch. Show all your work. You may do additional traces too if you'd like! [3]

z=___ trace

z= ___ trace

z= ___ trace