1. Matching: Math each quadric surface below to its corresponding name. [2 pts each]

- A: Plane
- B: Hyperboloid of 1 Sheet
- C: Hyperboloid of 2 Sheets
- D: Ellipsoid

E: Elliptic Cone

F: Hyperbolic Paraboloid (saddle) G: Elliptic Paraboloid H: None of the Above

- 1. x + y + z = 0 + 2. $x^2 y^2 = z^2 8$ + 3. $x^2 + y^2 + z^2 = 8$ +

- 4. $x y^2 = z^2$ 5. $x^2 y^2 = z + 8$ F 6. $x^2 + y^2 = z^2$ E

 Sketch a picture of, and write the equation for a circular cylinder with center: (1,2,3), and radius=10 that extends forever in the y direction. Note that this cylinder actually has infinite centers, so consider (1,2,3) just one of them. [5]

Equation: $(x-1)^2 + (z-3)^2 = 100$

3. Sketch a picture of, and name the following curve $x^2 + z^2 = y^2 - 36$ [5]

1 tick = 2 vais

Sketch:

Name: 1-4946 boloid of 2 sheets -x2+y2-z2=36 x2-y2+z2=-36

Sketch:

1 take

Equation: $\frac{10x+6y-3z=30}{}$

5. The quadric surface $y^2 = x + z$ is surprisingly a parabolic cylinder. Use 3 different xy traces (3 different values for z) to explore what it might look like, and draw a sketch. Show all your work. You may do additional traces too if you'd like! [3]

$$z = \frac{3}{2}$$
 trace

 $z = \frac{-3}{2}$ trace

