Questions 1 and 2 are Multiple Choice. Circle the best answer.

1. If the scalar projection $proj_ba$ is negative, what can be concluded about vectors a and b? [2 pts]

- a) The angle between them is acute
- b) The angle between them is obtuse

c) |a| > |b|

- d) |a| < |b|
- e) None of these must be true

- is a.... (hint: eliminate the parameter) [2 pts] 2. The set of parametric equations
 - a) circle

- b) ellipse c) ray d) partial parabola

3. Lines l_1 and l_2 are parallel lines whose parametric equations are given. Which answer choice represents a parametric equation of the plane that contains the two lines? [2 pts]

$$l_1: \begin{cases} x = 1 + \frac{-1}{\sqrt{14}} d \\ y = -1 + \frac{2}{\sqrt{14}} d \\ z = 3 + \frac{3}{\sqrt{14}} d \end{cases} \qquad l_2: \begin{cases} x = 5 + \frac{-1}{\sqrt{14}} d \\ y = 4 + \frac{2}{\sqrt{14}} d \\ z = -2 + \frac{3}{\sqrt{14}} d \end{cases}$$

a)
$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + s \langle -1, 2, 3 \rangle + t \langle 5, 4, -2 \rangle$$

a)
$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + s \langle -1, 2, 3 \rangle + t \langle 5, 4, -2 \rangle$$
 b) $\langle x, y, z \rangle = \langle -1, 2, 3 \rangle + s \langle 1, -1, 3 \rangle + t \langle 5, 4, -2 \rangle$

(c)
$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + s \langle 4, 5, -5 \rangle + t \langle -1, 2, 3 \rangle$$
 d) $\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + s \langle 4, 5, -5 \rangle + t \langle 5, 4, -2 \rangle$

d)
$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + s \langle 4, 5, -5 \rangle + t \langle 5, 4, -2 \rangle$$

e) none of the above

4. Given vectors a, b, and c, where each vector is orthogonal to each other vector, and $\vec{a} \times \vec{b} = \vec{c}$.

Circle ALL the statements that are true (no need to "show work"): [3 pts]

unit yectore

$$\times \vec{b} \times \vec{a} = \vec{c}$$

$$\times \vec{a} \times \vec{c} = \vec{b}$$

$$(\vec{b} \times \vec{c} = \vec{a}) \qquad \not \times \vec{c} \times \vec{b} = \vec{a}$$

$$\times \vec{c} \times \vec{b} = \vec{a}$$

5. Given the points A = (-1, 3, 2) and B = (5, 2, 5), and point P which is on the line segment \overline{AB} and is twice as far from A as it is from B. Find the coordinates of P. [3 pts]

6. A vector equation of a line is
$$r = (3i - 2j) + t(i + 4j)$$
 where the parameter t is any real number.

a) Write the equation of the line in rectangular form. [1 pt]

$$\frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}} \qquad \frac{19}{\sqrt{16+1}} \qquad \text{distance} = \frac{19}{\sqrt{17}}$$

7. If
$$|a| = 2$$
, $|b| = 3$, and $a \cdot b = -6$,

a) what is the angle θ between the vectors a and b? [2 pts]

$$\cos\theta = \frac{0.\sqrt{}}{|\mathbf{v}||\mathbf{v}|} = \frac{-6}{6} = -1$$

$$\theta = \pi$$

b) What is the magnitude of the cross product a x b? [2 pts]

$$\begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ -3 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & \hat{1} & -\hat{j} & | & 2 & 0 \\ -3 & 0 & 0 & | & -3 & 0 \end{vmatrix} + |\hat{k}| \begin{vmatrix} 2 & 0 \\ -3 & 0 & | & -3 & 0 \end{vmatrix}$$

a) Find vector MP. [1 pt]

-92

b) Use projections to find the distance from the point M to the plane

$$\frac{1}{3} \times -\frac{2}{3} + \frac{2}{3} \times -\frac{4}{3} = 0$$

$$\frac{|a \times + b + c \times + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|-\frac{4}{3} - \frac{6}{3} + \frac{10}{3} - \frac{4}{3}|}{\sqrt{\frac{1}{3} + \frac{4}{3} + \frac{4}{3}}} = 1$$

$$\frac{|a \times + b + c \times + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|-\frac{4}{3} - \frac{6}{3} + \frac{10}{3} - \frac{4}{3}|}{\sqrt{\frac{1}{3} + \frac{4}{3} + \frac{4}{3}}} = 1$$

$$\frac{|a \times + b + c \times + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|-\frac{4}{3} - \frac{6}{3} + \frac{10}{3} - \frac{4}{3}|}{\sqrt{\frac{1}{3} + \frac{4}{3} + \frac{4}{3}}} = 1$$

distance = 2 derived from two values of k that make the vectors (11, 2, -7) and $(k, k^2, 3)$ orthogonal. [3 pts] projections

$$11x + 2x^{2} - 21 = 0$$

$$2x^{2} + 11x - 21 = 0$$

$$2x^{2} + 14x - 3x - 21 = 0$$

$$2x (x + 7) - 3(x + 7) = 0$$
10. How many ways can you... [2 pts each]

$$K = -7 \text{ or } \frac{3}{2}$$

a) rearrange the letters of CALCULUS?

b) arrange 9 students in a circle?

c) select a president, vice-president, and treasurer from a group of 14 student?

d) form a committee of 5 men and 7 women from a group of 20 men and 30 women?

$$\begin{pmatrix} 20\\ 5 \end{pmatrix} \begin{pmatrix} 30\\ 7 \end{pmatrix}$$

11. A bag contains 15 marbles, numbered 1-15. Marbles 1-10 are blue, and marbles 11-15 are red.

If you draw 3 marbles without replacement... [2 pts each]

a) how many ways could you draw all odd numbers?

$$\begin{pmatrix} 8\\3 \end{pmatrix}$$

b) What is the probability that all 3 are blue?

(C) What is the probability that the three are consecutive numbers?

$$\frac{\binom{13}{1}}{\binom{13}{3}}$$

12. A single, 6-sided die is rolled 4 times in a row, and the results are written <u>in order</u>, creating a 4-digit number. Find... [2 pts each]

b) P(the number is a multiple of 5) =

$$\frac{6}{6}, \frac{6}{6}, \frac{6}{6}, \frac{6}{6}, \frac{7}{6}$$

c) P(the number has only odd digits) =

$$\frac{3}{4} \cdot \frac{3}{6} \cdot \frac{3}$$

d) P(the number has no digit repeated) =

Questions 13-15 refer to a certain population where:

- the probability of being a "gamer" is $35\% \rightarrow P(G) = 0.35$
- the probability of being "physically fit" is 40% \rightarrow P(F) = 0.40
- Let N = $P(G' \cap F')$.
- 13. What are ALL the possible values of N if... [2 pts each]
 - a) G and F are mutually exclusive?

0.25 < N < 0.6

14. If 20 people are randomly selected from the population, what is the probability that exactly 4 of them will be "gamers"? [2 pts]

15. If 20 people are randomly selected from the population, how many of them would you expect to be "physically fit"? [2 pts]

16. Jar A contains 4 blue and 2 red marbles. Jar B contains 3 blue and 3 red marbles. You choose one jar at random, and then chose a random marble from the jar. Find... [2 pts each]

b) P(Jar A | blue marble) =

c) P(Jar A or blue marble) =

