1. Find the points of intersection for the polar graphs $r = \sqrt{3}\sin 2\theta$ and $r = 3\cos 2\theta$, for $0 \le \theta \le 2\pi$. Please show all your work including the graphs of the two equations. (6 pts)

- II. Matching: Match each quadric surface below to its corresponding name. [1 pts each]
- A: Plane
- B: Hyperboloid of 1 Sheet
- **C**: Hyperboloid of 2 Sheets
- D: Ellipsoid

- E: Elliptic Cone
- F: Hyperbolic Paraboloid (saddle) G: Elliptic Paraboloid H: None of the Above

2.
$$y^2 + 9z^2 = 9$$

2.
$$y^2 + 9z^2 = 9$$
 3. $\frac{x^2}{4} - \frac{y^2}{9} + \frac{z^2}{6} = 1$ 4. $x^2 + y^2 - 24 = 4z$ _____

$$4. \ x^2 + y^2 - 24 = 4z \quad \underline{\hspace{1cm}}$$

5.
$$y^2 = 4x^2 + 16z^2$$

6.
$$5x - 3y + 2 = 30$$

5.
$$y^2 = 4x^2 + 16z^2$$
 _____ 6. $5x - 3y + 2 = 30$ ____ 7. $x = 4 - 5y^2 - 9z^2$ ____

	8. Sketch a picture of, and write the equation for a circular cylinder with center: (2,-3,5), and radius that extends forever in the x direction. Note that this cylinder actually has infinite centers, so cons (2,-3,5) just one of them. [5]		
Ske	tch:		
Equa	ation:		

9. Sketch a picture of, and name the following curve $\frac{x^2}{4} + \frac{z^2}{9} = \frac{y^2}{12} + 1$ [5]

Sketch:

10. The quadric surface $9y^2 = 4x^2 + 36$ is a hyperbolic cylinder. Draw a sketch with the intercepts. Show all your work. [3]