Analysis Honors 2021-2022 – Geometric Approach to Matric NO CALCULATORS		69.5 74 points	<u>Chris</u> Period:	lee_	, shear talent	
1. [4 pts] Write the 4 characte	ristics of a group:					
closure	_ szocietivity_	innerta	bility _	Identity	<u></u>	
2. [4 pts] Is each of the follow	ing groups isomorphi	c to D_4 , the dih	edral group o	f a square? Wi	rite "yes" or "no".	
a) The 4-post snap group? <u>ho</u>		c) The rotati	on group of a	square-based	prism? $\frac{4eS}{1}$ The flect $x = 4$ and $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$? $\frac{4eS}{1}$	plane
b) The rotation group of a	tetrahedron? <u>No</u>	d) The group	o generated b	$y \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} a$	and $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$?	<u> </u>
3. [7 pts] For each set and open- If it is not a group, w- If it is a finite group,- If it is an infinite group	rite "N/A" write the order of the	group.	y -	ncountable".	7	
a) real numbers unde	r addition <u>UNC</u>	e) triangula	r prism under	rotation 6		
b) integers under mu	Itiplication $\mathbb{N} \mid \mathbb{A}$.	f) 5-posts u	nder the snap	operation 51	-	
c) square under refle	ction <u>§</u>	g) positive a	and negative o	odd numbers u	ınder addition NA	(:
d) 3D space under the	e transformation $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} $ $\boxed{\frac{2}{}}$	0 0 1 0 1 0 0	= = = = = = = = = = = = = = = = = = = =		
4. [4] Consider a regular hexa a) Find $ 1 + 2i $.	gon drawn on the con b) Us	nplex axes with se your answer	center at the from part (a)	origin and a v to find the he	ertex at 1 + 2i. xagon's perimeter.	
√5		egular hexe sill all 1			d sides	be SAS
		e know t			1 1 1 1 1 1 1	
5. Consider the matrix $A = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$,5]	ides = 2			The same of the sa	,
a) [1] Find det A	11 = 14	perimet	er = 4+4	12	177	
b) [3] Your answer fi	om part (a) relates to	the area of a p	arallelogram	ABCD. What a	\ are the coordinates o	of
all 4 the vertices o	f the parallelogram, a	nd what is its a	rea?			

Vertices: (0,0), (3,4), (8,6), (5,2)

For Questions 6-9, all matrix elements should be given in simplified, exact form (not in terms of trig functions).

- 6. [6] Write a simplified 2x2 matrix that will accomplish each transformation
 - a) Rotate by $\theta = \frac{\pi}{2}$
- b) Reflect over the line $y = x \tan \frac{\pi}{2}$
- c) Shear in y by a factor of 2.

. [4] Use matrix multiplication to show that you can produce a counterclockwise rotation of 60 degrees by a sequence of two reflections. Under each matrix, use words to describe what that matrix does (be specific).

8. [4] Write a single 3×3 matrix that could be used to map the plane to the line $y = \frac{5}{2}x + 4$

9. [4] In the graph below, the preimage points A and B were transformed into A' and B' through what sequence of transformations? Give your answer in BOTH forms: as a multiplication of 2x2 matrices (don't actually multiply them), and as a written description of the transformations in sequence.

Matrix Multiplication:

Written description:

shear in 4 by factor of 1 then reflect over the y-axis

10. [4] Tom Brady is trying to decompose $T = \begin{bmatrix} 3 & -9 \\ 2 & 6 \end{bmatrix}$ into a series of simple stretches and shears. Part of his work is shown below:

$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{12} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -9 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Use Tom Brady's work to fill in the blanks below, expressing T as a series of simple stretches and shears:

$$T = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

11. [4] The complex number $z = \frac{(-2+2i)^8}{(\sqrt{3}-i)^3}$ can be simplified to a+bi form where a and b are integers. Find a and b.

Find a and b.

$$\begin{pmatrix} (\sqrt{3}-i)^3 \\ (-2+2i)^8 = (2\sqrt{2} \text{ cis } \frac{3\pi}{4})^8 = 4096 \text{ cis } 0$$

$$\theta = \frac{3\pi}{4}$$

$$(-2+2i)^3 = (2\sqrt{2} \text{ cis } \frac{3\pi}{4})^3 = 8 \text{ cis } -\frac{\pi}{2}$$

$$S12 \cos \frac{\pi}{2} + 512 \text{ is } (\frac{\pi}{2})$$

$$\theta = -\frac{\pi}{6}$$

$$r = 2$$
2. [3] The dihedral group of a triangle (D3) is isomorphic to the 3-post snap group, a 1-to-1 correspondence can

$$\begin{cases} \frac{4096 \text{ cis 0}}{8 \text{ cis } -\frac{\pi}{2}} = 512 \text{ cis } \left(\frac{\pi}{2}\right) \\ 8 \text{ cis } -\frac{\pi}{2} \\ 512 \cos \frac{\pi}{2} + 512 \text{ is in } \frac{\pi}{2} \\ 0 + 512 \text{ i} \end{cases}$$

$$(\sqrt{3} - i)^3 = (2 cis - \frac{\pi}{6})^3 = 8 cis - \frac{\pi}{2}$$

$$0 = -\frac{\pi}{6}$$

$$r = 2$$

12. [3] The dihedral group of a triangle (D3) is isomorphic to the 3-post snap group, a 1-to-1 correspondence can be drawn between their elements. Some of the paired elements are drawn below (and the first two are already completed). Draw in the missing 3 remaining 3-post snap group elements.

14. [8] On the complex axes on the right, the circle has a radius of 1, and complex numbers A, B, and C are shown.

Plot points D, E, F, and G on the same axes:

$$D = AC$$

$$E = B - C$$

$$F = B^2$$

$$G = C5$$

- 15. On the complex axes on the right, the circle has a radius of 1, and complex number A is shown.
 - a) [4] If $H^3 = A$, graph all possible values of H.

b) [2] Do the values of H form a group under multiplication? Justify your answer (<u>short</u> justification!).

since they're equally spaced

16. [4] Andy and Beth are trying to compare the number of points on the figures below:

They agree that any point on either figure can be written in decimal form, but they don't agree on the best way to make a correspondence from the coordinate pair in the 1^{st} figure to the single number in the 2^{nd} . They use the point (0.402, 0.987) as an example.

Andy's method: You can alternate between the x- and y-digits: $(0.\underline{402}, 0.987) \rightarrow 0.\underline{490827}$

Beth's method: You can write the x-digits, followed by the y-digits: $(0.402, 0.987) \rightarrow 0.402987$

Whose method is will NOT work for all real points from the first diagram? Use a counterexample to prove why that person's method will not work for any point from the first figure.

Beth's method will not work. This is because if you had the point (0.4029, 0.87) it would have the same decimal as (0.402, 0.987) under her method. Sine he know that pts on line = pts on plane, this drethod doesn't allow us to have a 1-1 correspondence. Beth's method also would not work for point's like (0.123, 0.456) vs (0.1234, 0.56) and (0.456, 0.784) ws (0.45, 0.6784)