| Analysis H            |
|-----------------------|
| Hahn/ Hlasek/ Tantod  |
| Unit 1: AtPS, Quiz 1  |
| <b>NO CALCULATORS</b> |

| We have a quiz today???? | Series-ly |               |
|--------------------------|-----------|---------------|
|                          | Period    | utif diabes a |

27 points

Odd-Number Triangle- (reminder: in the Odd# Triangle, the row with [3 5] is the 2<sup>nd</sup> row)

- 1. Write "true" or "false" for each statement. (1 pt each)
  - a) In the odd-numbered triangle, the difference between the last term of the  $n^{th}$  row and the first term of the  $n^{th}$  row is 2n-1.
  - b) The sum of the terms in the  $n^{th}$  row of the odd-numbered triangle is  $n^3$ .
  - c) The sum of the first k cube numbers is a square number.

Sequences and Series

2. Find the sum of each expression. Since you don't have a calculator, no need to calculate the actual number. Just give an equivalent numerical expression for each answer. (3 pts each)

a) 
$$13 + 16 + 19 + 22 + \dots + 103 =$$

b) Find the sum of the first 10 terms of the following series:  $256 + 192 + 144 + 108 + 81 + \dots$ 

Pascal's Triangle

- 3. The last 5 terms of the 16<sup>th</sup> row of Pascal's triangle are: 1820, 560, 120, 16, and 1. What are the last 5 digits of 11<sup>16</sup>? (2 points)
- 4. Simplify each as a single term, or single binomial coefficient. (2pts each)

a) 
$$\binom{15}{1} + \binom{15}{3} + \binom{15}{5} + \binom{15}{7} + \dots + \binom{15}{15} =$$

b) 
$$\binom{42}{0} + \binom{43}{1} + \binom{44}{2} + \binom{45}{3} + \dots + \binom{70}{28} =$$

c) 
$$\binom{50}{6} + 2\binom{50}{7} + \binom{50}{8} =$$

5. The first 5 rows of triangular pattern is shown below, where all terms are multiples of 3. For reference, the bolded "24" is  $a_8$ , and is the  $2^{nd}$  term of the  $4^{th}$  row, and is also the  $3^{rd}$  term of the  $2^{nd}$  column. The bolded "42" is  $a_{14}$ , which is the  $4^{th}$  term of the  $5^{th}$  row, and the  $2^{nd}$  term of the  $4^{th}$  column.

3 6 9 12 15 18 21 **24** 27 30 33 36 39 **42** 45

- a) In which row is  $a_{201}$ ? (2pts)
- b) What is the 8<sup>th</sup> term of the 2<sup>nd</sup> column. (1pt)
- c) Find an expression for the  $n^{th}$  term of the  $2^{nd}$  column. (3pts)

## Fibonacci Numbers

5.  $F_{158} = F_a F_b + F_{84} F_{73}$ . Find a and b (1 pt)

6. Find a compact expression for:  $F_0 - F_1 + F_2 - F_3 + F_4 - \dots - F_{2n-1} + F_{2n}$  (3 pts)

gi ox