1. Write each as a compact expression. No need to evaluate the actual number – you can just write an equivalent numerical expression. [3 pts each]

28 pts

$$\sum_{n=43}^{200} F_{2n}$$

$$\sum_{n=1}^{75} [5 + 7(n-1)]$$

2. Evaluate (your answer for this problem should be a single number). [3 pts]

$$\sum_{n=6}^{10} 512 \left(\frac{1}{2}\right)^n$$

3. Simplify completely: $\binom{3n+2}{3n-1}$ · (3!) Write your answer as a polynomial with integer coefficients. [3 pts]

4. Evaluate (give your answer as a single number): [2 pts each]

a)
$$\binom{-2}{500}$$

b)
$$\binom{6}{20}$$

c)
$$\binom{-8}{4}$$

5.	Prove by mathematical induction: $1+3+5+7+\cdots+(2n-1)=n^2$ for all positive integers n . [5 pts]
6.	Prove by mathematical induction: $2 \cdot 4^n + 3 \cdot 9^n$ is a multiple of 5 for all positive integers n . [5 pts]