Hahn / Hl	H 2022-2023 lasek/ Tantod equences and Series		Why so se Period: 44 points	eries?	
#1-4 are i	Multiple Choice: Circ	cie the best answer.	. [5 pts each]		
1. Which	of these is NOT a te	st for convergence f	or sequences?		
а) neighborhood test	b) alway	s increasing/decreasing a	and bounded above/bel	ow
С) n^{th} term test	d) domin	ation principle		e, rijeru - e e e u filo
е) none of the above	(all the listed answ	ers can be used to test fo	r convergence)	
2. The sec	quence $\left\{ \frac{\sqrt{10n^3 + 2n^2}}{\sqrt{8n^2 - 14n^3 + 2n^2}} \right\}$	$\frac{+4n^4+1}{2n^4-n-5}$ converges	to		
a) $\frac{\sqrt{5}}{2}$	b) $\sqrt{2}$	c) $\frac{1}{2}$	d) 0	e) $\frac{5\sqrt{7}}{7}$
3. For wh	at values of n is the	sequence $a_n = 5n$	$-n^2-1$ decreasing?		
a	$n \geq 3$	b) $n \le 3$	c) $n \ge 2$	d) $n \ge 1$	e) $n \leq 2$
4. ∑7 <i>r</i> ⁿ	will diverge for wha	t values of r?			
а	r > 0	b) $r \ge 1$	c) $ r \ge 1$	d) $r < 1$	e) $ r \leq 1$
5. For ead	ch statement, answe	er True or False [1 pt	each]		
a) A	A certain sequence c	onverges to $\frac{1}{2}$. Its co	orresponding series will d	iverge	
	A certain sequence conround $\frac{1}{2}$.	2	e will be an infinite numb	per of terms outside of a	any neighborhood
c) I	f a series converges	to a value, its seque	nce of partial sums will co	onverge to the same va	lue
	For sequence $\{a_n\}$ if	the limit of $\frac{a_{n+1}}{a_n}$ app	proaches $\frac{3}{2}$, then the corre	esponding series $\sum_{n=1}^{\infty} a_n$	a_n will

e) If a sequence a_n converges to 0, then the series $\sum a_n$ converges_____

6. Consider a sequence $\{t_n\}$ and its corresponding series $\sum_{n=1}^{\infty} t_n$

For all questions name a sequence that satisfies the given requirements, or state that none exists. [2pts each]

- a) $\{t_n\}$ converges to zero and $\sum_{n=1}^{\infty} t_n$ diverges. $\{t_n\} =$
- b) $\{t_n\}$ converges to zero and $\sum_{n=1}^{\infty} t_n$ converges. $\{t_n\} =$
- c) $\{t_n\}$ alternates and $\sum_{n=1}^{\infty} t_n$ converges to 3. $\{t_n\} =$
- 7. Given three sequences $\{r_n\}$, $\{s_n\}$, $\{t_n\}$ such that $\{r_n\} \le \{s_n\} \le \{t_n\}$ for all n. What must be true about $\{r_n\}$ and $\{t_n\}$ to conclude that $\lim_{n\to\infty} s_n = 5$ [2 pts]

- 8. Write a series that converges to $\frac{5}{3}$. Give your answer in Sigma notation. [4 pts]
- 9. For each sequence, write "C" if it converges and "D" if it diverges [1 pt each]

a)
$$\left\{\frac{2}{7n^2}\right\}$$

a)
$$\left\{\frac{2}{7n^2}\right\}$$
 b) $\left\{\frac{n^2+1}{\cos^2 n}\right\}$ c) $\left\{\frac{5}{\sqrt[5]{n}}\right\}$ d) $\left\{\frac{n+1}{n\sqrt{n}}\right\}$

c)
$$\left\{\frac{5}{5\sqrt{n}}\right\}$$

d)
$$\left\{ \frac{n+1}{n\sqrt{n}} \right\}$$

10. Justify your answer to 9(b) by using one of the tests we learned in class. In your answer, include the name (or explanation) of the test. [3pts]

11. Justify your answer to 9(c) by using one of the tests we learned in class. In your answer, include the name (or explanation) of the test. [3pts]

Questions 12-14: [5 pts each]

For each series, write a clear proof to show convergence or divergence, first indicating the name of the test you used. **Important: for these 3 problems, you MAY NOT use the same test twice!** If you use the same test for more than one problem, you will lose 3 points per infraction. Do the work for #12 and 13 on this page, and then the work for #14 on the back of this page.

	∞	
12.		$\cos(n\pi)$
	Ζ,	n+1
	n=1	

Test used:		
	The state of the s	

13.
$$\sum_{n=1}^{\infty} \frac{n! \, 3^{2n}}{4^n (n+3)!}$$

Test used:		

14.

Z.	ln (n)
\angle	n^3
n=1	

Test used:	
rest used.	