

**For this whole exam, we're working in 2D, unless 3D is specified in the question.

Multiple Choice [3 pts each]

1. Given z in the third quadrant,

(a)
$$Re(z) < 0$$

b)
$$Re(z) > 0$$

c)
$$Re(z) = 0$$

d) Not enough info

2. Given z in the third quadrant,

a)
$$Im(z^2) < 0$$

(b)
$$Im(z^2) > 0$$
 c) $Im(z^2) = 0$ d) Not enough info

c)
$$Im(z^2) = 0$$

- 3. The rotation group of a triangular prism contains how many elements?

- d) 48
- 4. Which matrix will take a pre-image, shear in the y-direction by 3, and then rotate by 30 degrees?

a)
$$\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{3\sqrt{3}+1}{2} & \frac{3-\sqrt{3}}{2} \end{bmatrix}$$

a)
$$\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{3\sqrt{3}+1}{2} & \frac{3-\sqrt{3}}{2} \end{bmatrix}$$
 b) $\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{3\sqrt{3}+1}{2} & \frac{-3+\sqrt{3}}{2} \end{bmatrix}$ c) $\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{3\sqrt{3}-1}{2} \\ \frac{1}{2} & \frac{3+\sqrt{3}}{2} \end{bmatrix}$ d) $\begin{bmatrix} \frac{\sqrt{3}-3}{2} & -\frac{1}{2} \\ \frac{1+3\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$

c)
$$\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{3\sqrt{3}-1}{2} \\ \frac{1}{2} & \frac{3+\sqrt{3}}{2} \end{bmatrix}$$

$$\begin{array}{c|cccc}
\hline
d) & \frac{\sqrt{3}-3}{2} & -\frac{1}{2} \\
\underline{1+3\sqrt{3}} & \frac{\sqrt{3}}{2}
\end{array}$$

$$\begin{bmatrix} \frac{3}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{5}{12} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{12} & \frac{1}{12} \\ \frac{1}{2} & \frac{1}{12} \end{bmatrix}$$

5. Working in the 3D system, which matrix will take a pre-image and rotate it 90 degrees around the ya) $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

a)
$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$c) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$d) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

- 6. Given complex numbers r and s below and the given unit circle, which complex number most closely represents rs?
 - a) a
 - b) b
 - (c) c
 - d) d
 - e) e

Multiple Choice (continued):

- 7. The set of all points in a line is the same size as to the set of (circle ALL that apply)...
 - a) points in a plane
- b) integers

c) rational numbers

- d) real numbers
- e) points on a line segment

For Ouestions 8 and 9, refer to the following matrices:

$$A = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad A.R. = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- 8. What is the order of the group generated by matrix A?
 - a) 2
- b) 4
- d) 12
- e) 24

- 9. Matrix AB is a
 - a) Rotation by 60 degrees
 - b) reflection over the line y = x tan 120
 - (c) reflection over the line y =xtan30

- d) rotation by 30 degrees
- e) reflection over the line $y = x \tan 60$
- For Questions 10-12, refer to the matrices $C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$
- 10. If we just use matrix C as a generator, we make _____
 - a) not a group
- b) a group with order 2
- c) a group with order 4

- d) a countably infinite group
- e) an uncountably infinite group
- 11. If we just use matrix D as a generator, we make
 - a) not a group
- b) a group with order 2
- c) a group with order 4

- d) a countably infinite group
- e) an uncountably infinite group
- 12. If we use both matrices C and D as generators, we make _____
 - a) not a group
- b) a group with order 4
- c) a group with order 8

- d) a countably infinite group
- e) an uncountably infinite group

Free Response

Below, are two beautiful members of the 5 post group [2 each]

R:

a) State the period of Q _____6

b) State the period of R _____6

c) Draw Q o R (Q snap R where R goes first) to the right:

6 d) Draw the inverse of R

e) How many elements total are there in the five post snap group? 51 = 120

f) Would element R generate the entire 5 post group? Explain how you know.

no, R hers a period of 6, so it can only generate 6 elements before returning to

△ • 2. Show using matrix multiplication that you can produce a counterclockwise rotation of 120 degrees by a sequence of two particular reflections. For this problem, each element in each matrix should be a number (not in terms of sine or cosine). Under each matrix, use words to describe what that particular matrix does (be specific).[3]

$$\begin{bmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{53}/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{5}/2 & 1/2 \end{bmatrix}$$

Descriptions: reflection across y=xtan 60° reflection across x-axis

3. [4 pts] Write a single 3x3 matrix (yes, a 3 x 3!) that could be used to map the plane to the line $y = \frac{2}{3}x - 2$

$$T = \begin{bmatrix} 3 & 3 & 0 \\ 2 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

4. Write a single matrix that would turn the pre-image square in each figure shown below (its side lengths are 2) into the corresponding image. [2 pts each]

a)

0 1 2 Answer for (a):

b)

c)

Answer for (c):

> 5. If $(z + 2i)^{15} = z^{15}$, then Im(z) = ? Explain with a diagram and a sentence. (3 pts)

Im(z)=-1 Since the magnitudes of Zand (z+2i)
must be equal, Im(z) must equal-1 since
that is the only way adding 2i keeps the
magnitude the same.

Working in 3D, consider the following transformation matrices

$$D = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

a) How many elements are in the group generated by...[2 each]

7. Working in 3D, given
$$F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

working in 3D, given
$$F = \begin{bmatrix} 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

a) What transformation does F do? [2]

b) Would F alone generate a group? Explain why or why not [2]

8. As we learned first semester, we can write the equation of a parabola parametrically as (t, t^2) .

Use matrix transformations to find the parametric equation of the same parabola after a rotation of 30 degrees counterclockwise. [3]

$$x = \frac{-t^2 + t\sqrt{3}}{2}$$

$$y = t^{2\sqrt{3} + t}$$