SO
P‘r (2 \'\“ha‘

Name OV\&\Q_\SU\T

Analysis H— Hahn / Hlasek / Tantod Z 5
Unit 8: Limits, Quiz 1 on Sequences pPeriod: b
No Calculators 26 points
1. Answer True or False for each statement. [1 pt each] \./

a) If a sequence is always decreasing and bounded below, it must converge. [

b) If a sequence has an upper and a lower bound, then it the sequence must have a limit. ?' \/ ’
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c) If a sequence is always increasing and does NOT have an upper bound, it must be divergent.

d) If a sequence {a,} is everywhere decreasing, then a, = @, for all values of n.

e) Ifa, < b, S c, foralln, and d a, converges to -1and ¢, converge to 1,

then b, converges to 0. [

f) fa, > —n for all n, this proves that {a, } converges. i : \/

2. a)lsthe sequence {3,5-} always decreasing? If so, prove it algebraically. If not determine (and justify) the

interval over which it is decreasing. [3 pts] -
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b) Do one additional thing to prove that the sequence above converges. Include a conclusion statement. [3 pts)
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3. Find the limit of each sequence, or say “diverges” if the sequence diverges. No formal proof isreq red lom)
[2 pts each] ‘ | é
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' 4. a) For the sequence %}, state the value to which the sequence converges, or state that the sequence

diverges. CLEARLY justify your answer with a neighborhood proof for general £. If your work is correct but is
difficult to interpret, you may not receive full credit. [4 pts]

2~
the value to which the sequence converges (or say “diverges”): /-5
Show your work here:
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b) For the sequence {59-’;5[& , state the value to which the sequence converges, or state that the sequence ., 2\

diverges. CLEARLY justify your answer with a proof. For your proof, you MUST use one of the following
tests: the squeeze theorem OR the big theorem {bounded above/below and always increasing/decreasing
theorem) OR the comparison principle. If your work is correct but is difficult to interpret, you may not
receive full credit. [4 pts)

Test/Principle used: "(Y“J .

the value to which the sequence converges (or say "diverges”): 0

Show your work here: Az 3 : ,
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