Analysis H - Hahn / Hlasek / Tantod
GAtM Exam, 2023-2024
No Calculators

	Mill:	Tb	
Groupie:	IVIICHI	langea	
Period: _	6		

1. For a certain complex number z, Re(z)>0 and Im(z)>0. Answer "Always", "Sometimes" or "Never" for each of the following statements. [1 pts each]

c)
$$Re(z-2i) > 0$$
 _ $alpha ys$

e)
$$Re(\bar{z}) > 0$$
 always

f)
$$Im(\bar{z}) > 0$$

2. For each set listed below, give the number of elements in the set, or write "C" if the set is countably infinite, or "UNC" if the set is uncountably infinite. [2 pts each]

- a) Points on a line segment
- b) Rational Numbers excluding 0

- f) Elements in the 6-post snap group _ 120
- Elements in the 4-post snap group that have a period equal to 2

Elements in the group generated by "rotate 5 degrees" and "rotate -5 degrees"

- Elements in the group generated by "rotate 5 radians" and "rotate -5 radians"

Wumper line.

- 3. One way to map the points within a 2D square (let's call this "Set A") onto the points on a line segment ("Set B") is to first create a coordinate system for each, as shown above. Then take the (x,y) coordinate of a point in SET A and <u>alternate the digits</u> to create a corresponding point in SET B.
 - a) Fill in the table of values to complete the mapping as described above. The first is done for you.[2 pts each]

SET A point	SET B point
(0.357, 0.429)	0.345279
(0.123, 0.456)	0.142536 V
(0.45,0,18)	0.4758
(0.3, 0.987)	0.390807 1

b) Andy doesn't like the mapping method used in the table in part (a), and would rather just add the x and y-values of the Set A point to get a Set B value: (0.357, 0.429) → 0.786. Explain, using at least one counterexample, why this would **not** be a one-to-one correspondence between Set A and Set B. [3 pts]

c) Beth also doesn't like the mapping method used in the table in part (a), and wants to map the points from Set A to Set B this way: (0.357, 0.429) → 0.357429. Explain, using at least one counterexample, why this would **not** be a one-to-one correspondence between Set A and Set B. [3 pts]

4. Is there a one-to-one correspondence between the set of complex numbers and the set of 2x2 transformation matrices? If yes, describe the one-to-one correspondence and include a non-zero example. If no, give an example of an element in one set that does not have a corresponding element in the other set. [3 pts]

- 5. Consider the complex numbers x = -2 + 3i, y = -3 2i, and z = -2 i shown on the right. [2 pts each]
- a) Find the matrix of the transformation that maps x to y.

$$(-2,3) \rightarrow (-3,2)$$
 $T \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \end{bmatrix}$
 $T = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Find a complex number w such that wx = y.
 Then draw and label w on the coordinate axes to the right.

Find a complex number v such that zx = v.
 Then draw and label v on the coordinate axes to the right.

$$v = \frac{1 - 4 i \int_{-\infty}^{\infty} (in a + bi form)$$

d) Find the matrix of the transformation that maps x to v.

$$WX = Y$$

$$W(-2+3i) = -3-2i$$

$$W = \frac{-3-2i}{-2+3i} \left(\frac{-2-3i}{-2-3i}\right)$$

$$W = \frac{6+9i+4i+6i^2}{4^2-9i^2}$$

$$= \frac{13i}{13}$$

$$W = i$$

- 6. Consider the equation $z^4 = (z+1)^4$
 - a) Explain, using words, vector diagrams, and/or DeMoivre's Theorem, why z cannot be in the 1st quadrant. [3 pts]

be equal. Since 2+1 moves 2 to the positive real axis, Re(2) must be -0.5, there fore & cannot be in 1st QV

b) There are 3 possible answers for z. Find all of them. Give your answers in a+bi form.

rotate = 2 and (2+1)4 has to return to the $V = \sqrt{a^{2} + b^{2}}$ (otate $\frac{1}{2}$) $\frac{1}{2}$ Same place $\frac{1}{2}$ period of $\frac{1}{2}$. $V = \sqrt{a^{2} + b^{2}}$ V = 1 $V = \sqrt{a^{2} + b^{2}}$ V = 1

7. Consider the complex number z in the first quadrant, as shown in the diagram below. |z| = 2 and $Arg(z) = \theta$.

- Draw (z-2) onto the diagram, and draw the triangle that is created by the origin, z, and (z-2). [3 pts]
- b) Find an expression for the area of the triangle, in terms of θ . [4 pts]

Area 5: = (1)(i) sin 0

8. Given the transformation matrix T below and the pre-image graphed on the right,

$$T = \begin{bmatrix} 1.5 & 2 & -2 \\ -2 & 1.5 & 7 \\ 0 & 0 & 1 \end{bmatrix}$$

- a) Apply the transformation to the points and graph the image on the same axis. [3 pts]
- b) (multiple choice: circle the BEST answer) The transformation given by matrix T is: [2 pts]
 - i) a reflection, a dilation, and a shear (in that order) \times
 - ii) a rotation, a stretch, and a shear (in that order)
 - iii) a rotation, a dilation, and a translation (in that order)
 - iv) a reflection, a dilation, and a translation (in that order) \times
- 9. The maximum period of an n-post snap group is 105. Find n. Justify your answer. [3 pts]

521

max period of 26 post is larger than los.

11. Decide whether the set $\left\{1, \frac{1}{2}, 2, i, \frac{i}{2}, 2i, -1, -\frac{1}{2}, -2, -i, -\frac{i}{2}, -2i\right\}$ with multiplication is a group. If yes, what is the identity? If not, explain which requirement of a group is not satisfied. [2 pts]

Not a group. No closure. 2027 4 which is not in group.

12. Decide whether the set of all real numbers under the binary operation defined as $\mathbf{a} \star \mathbf{b} = \mathbf{a} + \mathbf{b} - \mathbf{a} \mathbf{b}$ is a group. If yes, what is the identity? If not, explain which requirement of a group is not satisfied. [2 pts]

-0/