Analysis Honors – Hahn / Hlasek / Tanto	d
Unit 3: Polar and 3D Graphing	
Big Quiz – No Calculators	

61.5 65 points

When life gives you lemniscates, Michi lanaka

Part I: Polar Graphing

Questions 1-2 are Multiple Choice: Circle the best answer for each problem. [2 pts each]

Which is a line of symmetry for $r = -5\sin 7\theta$?

-2 pts.

a)
$$\theta = \frac{2\pi}{7}$$

b)
$$\theta = 0$$

c)
$$\theta = \frac{\pi}{7}$$

a)
$$\theta = \frac{2\pi}{7}$$
 b) $\theta = 0$ c) $\theta = \frac{\pi}{7}$ d) $\theta = \frac{15\pi}{14}$ e) $\theta = \frac{6\pi}{7}$

e)
$$\theta = \frac{6\pi}{7}$$

$$V = \frac{1}{2} \left(\frac{s \cdot h0}{\cos \theta} \right) \left(\frac{1}{\cos \theta} \right) \qquad r = \frac{1}{2} \left(\frac{s \cdot h0}{\cos^2 \theta} \right) \qquad - \gamma / r$$

The rest of the Polar section is Free Response. Show all your work to receive credit.

 $\sqrt{3}$. Find <u>all</u> the the points of intersection between the two curves: $r = 1 + \cos 2\theta$ and $r = 1 + \cos \theta$. Give your answers as polar points. (note: $r = 1 + \cos 2\theta$ is NOT one of the curves that we studied this unit). [4 pts]

(the graphing space on the left is for your work, but will not be graded)

- 4. Consider the polar points A $\left(-6, \frac{\pi}{6}\right)$ and B $\left(2, \frac{\pi}{4}\right)$.
- a) Graph and label the points on the polar axis on the right. [2 pts]
- b) Find the length of line segment AB. Give your answer in exact

form, but no need to simplify. [2 pts]
$$A: \left(-6\cos\frac{\pi}{4}, -6\sin\frac{\pi}{4}\right)$$

$$\left(-3\sqrt{3}, -6\sin\frac{\pi}{4}\right)$$

$$B: \left(2\cos\frac{\pi}{4}, 2\sin\frac{\pi}{4}\right)$$

$$\left(-3\sqrt{3}, -3\right)$$

$$\left(5\pi, \sqrt{2}\right)$$

$$\left(5\pi + 3\sqrt{3}\right)^{2} + \left(5\pi + 3\right)^{2}$$
Length of AB =
$$\frac{\left(5\pi + 3\sqrt{3}\right)^{2} + \left(5\pi + 3\right)^{2}}{\left(5\pi + 3\sqrt{3}\right)^{2} + \left(5\pi + 3\right)^{2}}$$

5. Write the polar equation for the rose curve with eight petals, centered at the origin and passing through $(5, \frac{\pi}{8})$ with the length of each petal being 5. [3 pts]

6. Graph each function. Then classify it according to its most specific name. [3 pts for each graph, 1 pt for name]

a)
$$r = 7 \sec \theta$$

Name: Vertical line

Name: Cardioid Limacon

7. Write the equation of the following graph: [2 pts]

8. Find <u>all</u> the points of intersection for the system of equations: $r = 3 + 6\cos\theta$ and r = 3. Give your answers as polar points. [3 pts]

(the graphing space on the left is for your work, but will not be graded)

Part II: 3D Graphing

9. For each equation below, write the letter that represents the best name of that 3D figure. [2 pts each]

A: Plane

B: Hyperboloid of 1 Sheet

C: Hyperboloid of 2 Sheets

D: Ellipsoid

E: Elliptic Cone

F: Hyperbolic Paraboloid

G: Elliptic Paraboloid

H: Parabolic Cylinder

I: None of the above

i)
$$y^2 + z^2 = x^2$$

iv)
$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 1$$

ii)
$$9x^2 + 4z^2 = y$$

From axing parabola

Yes the ellipse

v)
$$x^2 - 9y^2 = z - 8$$

Y= 0 Parabola

Y= 0 Parabola

T= 9 Hyperbola

iii)
$$x^2 + z^2 = 7 + y^2$$
 8

vi)
$$2x + 3y + z = 1$$

For each 3D graph below, write the letter with the equation that corresponds to the graph. [2 pts each] $\mathbf{J}: x^2 - y^2 = z$ $\mathbf{K}: y^2 - x^2 = z$ $\mathbf{L}: x^2 - z^2 = y$ $\mathbf{M}: z^2 - x^2 = y$ $\mathbf{N}: z^2 - y^2 = x$ $\mathbf{0}: y^2 - z^2 = x$

11. Sketch each 3D figure. In your sketch, <u>label at least one point</u> on the figure using its coordinates. Then state the name of each figure[3 pts each sketch, 1 pt name]

b)
$$\frac{x^2}{4} + y^2 - \frac{z^2}{9} = 1$$

Name: Plane

Name: Hyperboloid of Isheet

c)
$$\frac{\sqrt[9]{9}}{\sqrt[2]{2}} + \frac{z^2}{16} = 5 - y$$

d)
$$z = (y - 5)^2$$

Name: Ellirta Paraboloid

Name: Parabolic Cylinder

a) Fill in the boxes below with either "+", "-", "1", or "2" to make it the equation of a hyperboloid of two sheets with vertices on the z-axis. [1 pt]

$$\exists x^{[1]} \exists y^{[2]} \exists z^{[2]} = 1$$

$$x^2 + y^2 - z^2 = -1$$

$$z \neq 0 \Rightarrow PNE \Rightarrow Hyper 2 sheet.$$

b) Sketch a hyperboloid of two sheets with vertices (0, 1, 4) and (0, 1, -4) that also passes through the point (2, 3, 12). [2pts]

c) Write the equation of the hyperboloid from part (b) in the form $a(x+b)^2 + c(y+d)^2 + e(z+f)^2 = g$, where a, b, c, d, e, f and g are **integers**. [2 pts]

1-12