1.
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} =$$

$$2. \lim_{x \to \infty} \frac{2x^2 + 3}{x^2 - 4} =$$

3. If
$$f(x) = 2 + \frac{1}{x - 3}$$
 find $\lim_{x \to 3^+} f(x) = \lim_{x \to -\infty} f(x) = 0$

$$\lim_{x \to 3^{-}} f(x) =$$

$$\lim_{x \to \infty} f(x) =$$

- 4. Find the definite integral of $f(x) = -0.1x^2 + 7$ on the interval [0,5] using 5 increments.
- 5. A sports car accelerated in such a way that its velocity as a function of time is given by $v(t) = 15t^{0.6}$.
- a) Find an equation for x(t), the displacement of the car from a fixed point
- b) Find a unique displacement function if $x(1) = 7\frac{3}{8}$
- 6. Find values of the constants a and b that make the function differentiable at x = 2.

$$f(x) = \begin{cases} -(x-3)^2 + 7 & \text{if } x \ge 2\\ ax^3 + b & \text{if } x < 2 \end{cases}$$

7. Find the particular function that has the given derivative:

$$f'(x) = \sin(x)$$
 and $f(\pi) = 8$

$$f'(x) = x^2 + 12x - 7$$
 and $f(3) = 10$

Use the given table to answer the next two questions:

x	f(x)	f'(x)	g(x)	g'(x)
0	2	1	5	-4
1	3	2	3	-3
2	5	3	1	-2
3	10	4	0	-1

8. If
$$B = f(g(x)) + 3(f(x))^2$$
, then $B'(1) =$

9. If
$$M = f(g(x^2))$$
, then $M'(1) =$

10 If
$$D = [f(x) + g(x)]^3$$
, then $D'(2) =$

11. Let
$$f(x) = \begin{cases} \frac{x^2 + x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$

Which of the following statements is (are) true?

- I. f(0) exists
- II. $\lim_{x\to 0} f(x)$ exists
- III. f(x) is continuous

a) I only

b) II only

c) I and II only

- d) all of them
- e) none of them

12. If $f(x) = x + 2\cos(x)$, then the equation of the tangent line to the graph through the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is

$$y = x x + y = \pi$$

$$x + y = 2$$

$$y = x - \pi$$

$$x + y = \pi$$
 $x + y = 2$ $y = x - \pi$ $y - \frac{\pi}{2} = -2\left(x - \frac{\pi}{2}\right)$