	7
(A)	The
-2	slope of
(B)	of the curve
41-	'e y' – xy²
(C)	$cy^2 = 4$ at
2 -	the poi
Ð	nt where
٠ -	y=2 is
Ð	Î
2	

2

21

The slope of the curve
$$y^2 - xy - 3x = 1$$
 at the point $(0, -1)$ is

The slope of the curve
$$y^2 - xy - 3x = 1$$
 at the point $(0, -1)$

(A) -1

(B)

12

0

+

 Θ

B

The equation of the tangent to the curve
$$y = x \sin x$$
 at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is

$$y = x - \pi$$
 (B) $y = \frac{\pi}{2}$ (C) $y = \pi - x$

(E)
$$y = x$$

 Θ

 $y = x + \frac{\pi}{2}$

A

4.
$$\lim_{x \to 3} \frac{x-3}{x^2-2x-3}$$
 is

 \mathbf{E}

 \mathbf{B}

0

5. The point on the curve
$$y = \sqrt{2x+1}$$
 at which the normal is parallel to the line $y = -3x + 6$ is

(A)
$$(4,3)$$

 Θ

(4, -3)

0

 $(1, \sqrt{3})$

(E)
$$(2, \sqrt{5})$$

6.
$$\lim_{x\to 0} \frac{x}{x}$$
 is

 $\overline{\mathbf{B}}$

(A) none

(B) 1

The equation of the tangent to the curve
$$x^2 = 4y$$
 at the point on the curve where $x = -2$ is

(A)
$$x+y-3=0$$

(B)
$$y-1=2x(x+$$

(E) $x+y+1=0$

$$x(x+2)$$
 (C) $x-y+3=0$

(D)
$$x+y-1=0$$

B)
$$y-1=2x(x+2)$$

$$x + y + 1 = 0$$

The equation of the tangent to the hyperbola
$$x^2 - y^2 = 12$$
 at the point (4, 2) on the curve is

(A)
$$x-2y+6=0$$

(B)
$$y = 2x$$

(C)
$$y = 2x - 6$$

(A)
$$x - 2y + 0 = 0$$

(D) $y = \frac{x}{2}$ (E)

$$y = \frac{x}{2} \qquad (E)$$

x + 2y = 6

$$y = 2x \qquad (C$$

Use the graph shown for Questions 18-24. It shows the velocity of an obj along a straight line during the time interval $0 \le t \le 5$.

18.) The object attains its maximum speed when t =

E

(A) (0,1) (B) (1,2) (C) (0,2) (D) (2,3)
$$(E)$$
 (1,3)

(B)
$$(1,2)$$

$$(1,2)$$
 (C)

21. How many times on
$$0 < t < 5$$
 is the object's acceleration undefined?

more than

A

(23.) The object is furthest to the right when
$$t =$$

E

10

(A) 0

(B)

average acceleration (in ft/sec²) for the interval
$$0 \le t \le 3$$
 is

The object's average acceleration (in ft/sec²) for the interval
$$0 \le t \le 3$$
 is

B 5

0

ఓ

9

1

none of