BC Calc	ulus 2024-25	- Hahn/Limburg
No Calc	ulatore	

What did	_ ask Mr. Series at the dining table?
Could you please push Ma-C	hair In? Period:

Scoring Grid (teacher use only):

	1	2	3	4	5	Totals (not an average)
Implementing Mathematical Processes						
Connecting Representations						
Justification						
Communication and Notation						

- 1. Consider the Maclaurin series for $f(x) = \cos x$
 - a) [IMP] Use the first two terms of the Maclaurin series to approximate $cos\left(\frac{1}{2}\right)$

b) [CR] Find the Alternating Series error bound for your answer from part (a).

2. [J, CN] Find the interval of convergence for $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n^2}$. Clearly show all your work (and justify with tests) to earn full credit.

3. Consider the Taylor	series for $f(x) =$	$\frac{1}{1-\frac{x^2}{}}$	centered at $x = 0$.
		± 1	

a) [CR] Write the first four terms of the series.

b) [J, CN] Determine the interval of convergence for this series. Clearly show all your work (and justify with tests) to earn full credit.

- C) [CR] What is the radius of convergence for this series?
- 4. [IMP] Find a 2nd degree Taylor polynomial for $f(x) = \sqrt{x+1}$ centered at x = 3.

5. [IMP, J] Find the Lagrange error bound for the approximation of \sqrt{e} using a 3rd degree Maclaurin polynomial of $f(x) = e^x$.