Answers to Extra Practice with Normal Distributions

Extra Practice I:

1. On the SAT, Jose's z-score is $z = \frac{1770 - 1499}{319} = 0.85$. To find his equivalent score on the ACT, we solve $0.85 = \frac{x - 20.9}{4.8}$ for x and get x = 24.98.

2. Step 1: State the distribution and values of interest. For the SAT, scores follow a Normal distribution with mean 1499 and standard deviation 319. We want to find the percent of students with scores less than 1320 (see graph below). Step 2: Perform calculations. Show your work. The

standardized score for the boundary value is $z = \frac{1320 - 1499}{319} = -0.56$. From Table A, the proportion of

z-scores below -0.56 is 0.2877. Using technology: The command normalcdf(lower: -1000, upper: 1320, μ : 1499, σ : 319) gives an area of 0.2874. **Step 3: Answer the question.** Tanya's score is at the 29th percentile.

3. Step 1: State the distribution and values of interest. For the ACT, scores follow a Normal distribution with mean 20.9 and standard deviation 4.8. The 25^{h} percentile is the boundary value *x* with 25% of the distribution to its left (see graph below). Likewise, the 75^h percentile is the boundary value *x* with 75% of the distribution to its left (see graph below). Step 2: Perform calculations. Show your work. Look in the body of Table A for a value closest to 0.25. A *z*-score of -0.67 gives the closest value

(0.2514). Solving $-0.67 = \frac{x - 20.9}{4.8}$ gives x = 17.7. Using technology: The command invNorm(area:

0.25, μ : 20.9, σ : 4.8) gives a value of 17.7. Likewise, solving 0.67 = $\frac{x - 20.9}{4.8}$ gives x = 24.1. Step 3:

Answer the question. For the ACT, the quartiles are 17.7 and 24.1.

