M&M's and Confidence Intervals!

Please DO N	NOT eat you	ur M&M's ur	ıtil we are do	ne with the e	ntire activi	ty 😀	
Part I: Us	e Confide	ence Interv	als to estim	ate the true	e proport	ion of each	color.
You will use	random sa		M's from you	&M's and a c ir bag to calcu d.			
(M&M's con Gue	ne in six co	your open yo lors: red, oran olor occurs m olor occurs le	nge, yellow, ş ost often:	green, blue, bi	rown)	CHOCOLATE CANDIES	
proportion for for samples of	or each colo of size 40 to	or in the space of generate a 9	e provided be 0% confiden	nple of 40 Molow. Then use ce interval for epeat this proc	your chart the true p	t of 90% boxproportion of e	olots ach
Trial #1 (n ₁ = 40)	Number		90% CI	Trial #2 (n ₂ = 40)	Number	Proportion \hat{p}	90% CI
Red				Red			
Orange				Orange			
Yellow				Yellow			
Green				Green			
Blue				Blue			
Brown				Brown			
		, ,	•	s) according t			

Trial 1: Red	Orange	Yellow	Green	Blue	Brown
Trial 2: Red	Orange	Yellow	Green	Blue	Brown
How many times compare results					
5. Choose a Containthis situation.	fidence Interva	l from the table	e above. Interp	oret that CI ir	the context of
6. Write a statem	ent explaining	what a Confide	ence Interval t	ells us about	the population.
Part II: Use C	Confidence I	ntervals to es	stimate the	number of	M&M's in the enti
	t back into the	population you	a can tell they	were origina	ng" them so that ally "tagged." (Hint:
2. How many of	the chosen "tag	gged" color are	in the entire b	oag? T =	
3. Write how ma	ny of the chose	n "tagged" col	or you got in	our two sam	ples of 40.
Trial #1 t	here were		and Trial #2	2 there were	
4. Set up a propo estimate for the r				and \widehat{p} from T	rial #1 to find an
				$N_1 = \frac{1}{2}$	
5. Repeat the pro	cess in #4 with	Trial #2.			
				3.7	

$Jse T = \underline{\qquad} to$	o solve for a CI to estimate the true number of M&M's in
ne bag. You will have to solve to	wo proportions, one for each endpoint of the CI.
	$CI_1 = $
Repeat the process in #6 with 7	Trial #2.
Vrite the CI you found from Tria	al #2 for the "tagged" color:
Use $T = \frac{to}{to}$ to the bag. You will have to solve tw	o solve for a CI to estimate the true number of M&M's in wo proportions, one for each endpoint of the CI.
	$CI_2 = $
. Now COUNT all of the M&M	I's in your bag! N _{bag} =
Doos the total number of M&N	I's in your bog (N)) fall within your CIs from #6 and #7
How many times out of two did y	M's in your bag (N _{bag}) fall within your CIs from #6 and #' you capture the true amount in your bag?/ entire class. What success rate is this? Why?