Ch 9: Parametric, Polar and Vector Calculus: Review Sheet

No calculator except as marked. The Quiz itself will have 2 calculator pages, and 1 non-
calculator page.
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E 2. For any time ¢ > 0, if the position of a particle in the xy-plane is given by
&9 x=¢ andy=e"', then the speed of the particle at time 1 =11is 2,743
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3. An integral expression for the length of the curve determined by the parametric equations
x=sint and y=¢ from t=0to t=ris
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4. Consider the curve in the xy-plane represented by x = 2 and y =In¢ for #> 0. The slope of
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5. A curve is defined parametrically by x =¢' and y =2e™. An equation of the tangent line to
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6. The position of a particle moving in the xy-plane is given by x =¢> +2¢, y =2t" —6t.
When ¢ = 2, the speed of the particle is _2.3\0 . W) k2 Y ‘()2 4k~
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7. If x=sint¢ and y = cos’ ¢, then dy isatr=2is - 2
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8. A curve is parametrically defined by the equations x =2cost and y = 2sin¢. The length of
the arc from  #=0 to £ =2 is given by the integral
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9. If a particle moves in the xy-plane so that at time ¢ > 0 its position vector is
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10. A particle moves on the circle x* + y2 =1 so that at time 7 >0 its position is given by the
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vector  r(t)= <1—2,1—2> . As tincreases without bound, the coordinates of the point that
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11. A curve C is defined by the parametric equations x =
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An equation for the curve C in terms of x and y is y=\-x
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12. Write a set of parametric equations which would graph the polar curve with the equation
r=2-3cos@.
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13. Suppose the function » = f(6) is differentiable. The table gives values for f and ' at 6= %
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The slope of the line tangent to the graph of » = f(8)at the point where 0 = % is T~ Y s .
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14. The slope of the tangent line to the cardioid » =1+cos @ at 0=% is ~\
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15. Consider the polar equation » =2—-2cosf . Jdy¢
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a) Express the derivative, Z—y, for the given polar equation. Try to simplify
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b. Find all values of @ for which the polar graph has only a vertical tangent line.
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16. Find the area of the region enclosed by the polar curve » =6 and the horizontal axis as
shown in the figure.
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For 17 —19: Use your calculator to check if your integral is correct. Make sure that your

calculator is in radian mode, and that limits of integration are given at least to 3 decimal places.

17. Let R be the region that lies inside the polar curves » =2 —cos @ and inside the polar curve
r=1+cosd.

Write an integral expression that results in the area of this region.
r(6)=2—cos(6)
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18. Find the area of the region that lies inside both the curve » =cos@ and r =sin@.
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19. The figure to the right shows the graphs of the polar curves » =2 =2
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and r =2+ cos( 20). Let R, be the shaded region in the first %
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quadrant bounded by the two curves and the horizontal axis, and R,

be the shaded region in the first quadrant bounded by the two curves \%
and the vertical axis. r=2+cos(26)

a. Set up, but do not evaluate, an integral expression that represent the area of region R, .
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b. Set up, but do not evaluate, an integral expression that represents the area of region R, .
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