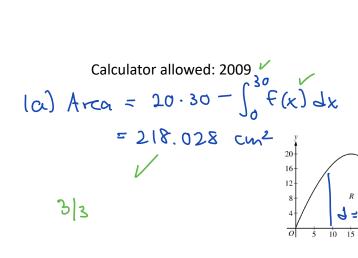
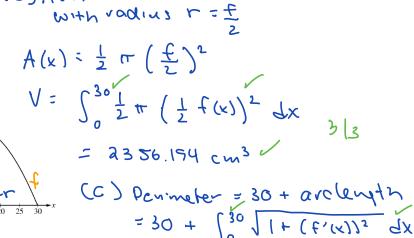
3/3 ac. position vector s(t)=(x(t),y(t)) S(t) = (4 cos(t2)-2sin(t3)cos(t2) FRQ Practice: polar, volume, vector, arc length. V 4 sin (+2) - 2 sin (+2) > V 313 Calculator allowed: 2013 2α) $\frac{2}{3}\pi \cdot 3^{2} + \frac{1}{2}\int_{\pi}^{5\pi/6} (4 - 2\sin\theta)^{2}d\theta$ v(t) = 5(t) = < x(t), y(t)> $X(t) = 4\cos t^2 - 2\sin t^2 \cos t^2$ 24.7087 x (1.5)= -8.072 26) X(0) = 4cost - 25178 Costs g(+)= ((sint2 - 2sin2 Lf2) ~ x(t) = 4 cos(t2) - 25/2 t2 cqs +2 4'(+)= -1.6729 V -1 = 4 cos(t2) - 2 sin(t2) eas Solve by graphing t = 1.42798 v(1.5) = (-8.072) - 1.6732. The graphs of the polar curves r = 3 and $r = 4 - 2\sin\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$ (a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 - 2\sin\theta$. polar anoa il ride (b) A particle moves along the polar curve $r = 4 - 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1. $\times (\theta) = \cos \theta$ (c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5. Extra add ons: Qvclength Polar = 5 12 + (dx)2. 20 (d) Find the perimeter of the shaded region $P = \frac{2}{3} \cdot 2 \text{ tr. } 3 + \int_{\pi/6}^{5\pi/6} (y-2\sin t)^2 + \lambda \cos^2 t dt$ (e) Find the time when the particle described in part b has a speed of 5parametric/vector P= 17.931 Speed \((x'(t))2+[4'(t)]2 graph directions: Letine Y7 = 1x [4sin(x2) - 26in (x2)]/xex 18 = 7× [4 cos (x2) - 3 sin(x2) cos(x3)] do not graph 47 and 48 Y9 = \ [Y7]2 + [Y8]2 410 = 5 find intersection of 49 and 410. £ = 1.06263, 1.24991





(b) A(x) of cross sections

- 1. A baker is creating a birthday cake. The base of the cake is the region R in the first quadrant under the graph of y = f(x) for $0 \le x \le 30$, where $f(x) = 20\sin\left(\frac{\pi x}{30}\right)$. Both x and y are measured in centimeters. The region R 5/2 = 30+ 51.80 37 is shown in the figure above. The derivative of f is $f'(x) = \frac{2\pi}{3} \cos\left(\frac{\pi x}{30}\right)$. = 81.804 cm
 - (a) The region R is cut out of a 30-centimeter-by-20-centimeter rectangular sheet of cardboard, and the remaining cardboard is discarded. Find the area of the discarded cardboard.
 - (b) The cake is a solid with base R. Cross sections of the cake perpendicular to the x-axis are semicircles. If the baker uses 0.05 gram of unsweetened chocolate for each cubic centimeter of cake, how many grams of unsweetened chocolate will be in the cake?
 - (c) Find the perimeter of the base of the cake.

orchangen of function 2) 21 Joxf(x).

So 11+ (f-(x))2 dx V: 36000 cm³

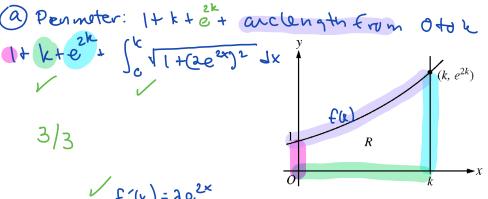
Add on for practice:

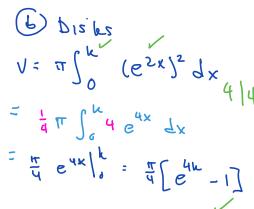
- (d) find the volume of the solid when region R is revolved around the y-axis.
- (e) find the volume of the solid when region R is revolved around the horizontal line y=50

washers π (50-0)2 dx - 1 (50 50 - F(x))2 dx = 101150.444

No Calculator allowed: 2011

3/3





- 3. Let $f(x) = e^{2x}$. Let R be the region in the first quadrant bounded by the graph of f, the coordinate axes, and the vertical line x = k, where k > 0. The region R is shown in the figure above.
 - (a) Write, but do not evaluate, an expression involving an integral that gives the perimeter of R in terms of k.
 - (b) The region R is rotated about the x-axis to form a solid. Find the volume, V, of the solid in terms of k.

(c) The volume V, found in part (b), changes as k changes. If $\frac{dk}{dt} = \frac{1}{3}$, determine $\frac{dV}{dt}$ when $k = \frac{1}{2}$. 1 = 1 [= eqr] . de

2 | 2