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3 } 3 2. The graphs of the polar curves' r =3 and 7 = 4 — 2sin € are shown in the figure above. The curves intersect
when9=% andezs?”.

(a) Let S be the shaded region that is inside the graph %f r =3 and also inside the graph of r = 4 — 2sin 6.
Find the area of S. 3 v
in area o pd\o./' oo ;_Sa rtd6
(b) A particle moves along the polar curve r = 4 —2sin 6 so that at time 7 seconds, 6 = 1*. Find the time 7 in
the interval 1 < r < 2 for which the x-coordinate of the particle’s position is —1. - ( =
P P X(0) = (aRE |y Q)

(c) For the particle described in part (b), find the position vector in terms of 7. Find the velocity vector at (SS | n 6
time 7 = 1.5.
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(e) Find the time when the particle described in part b has a speed of §
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1. A baker is creating a birthday cake. The base of the cake is the region R in the first quadrant under the graph of

y = f(x) for 0 < x <30, where f(x)= 2()sm(30) Both x and y are measured in centimeters. The region R
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is shown in the figure above. The derivative of f is f"(x) = 3 o (30) _
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(a) The region R is cut out of a 30-centimeter-by-20-centimeter rectangular sheet of cardboard, and the

remaining cardboard is discarded. Find the area of the discarded cardboard.

(b) The cake is a solid with base R. Cross sections of the cake perpendicular to the x-axis are semicircles. If the

baker uses 0.05 gram of unsweetened chocolate for each cubic centimeter of cake, how many grams of 0
unsweetened chocolate will be in the cake?

(c) Find the perimeter of the base of the cake. ave \Q’ E th ~(:u _\\h“ﬂ é3 ZT\" S X -C(\(\ é'\(
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(d) find the volume of the solid when region R is revolved around the y-axis.

(e) find the volume of the solid when reglon R is revolved around the horlzontal line y=50
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3. Let f(x) = ¢**. Let R be the region in the first quadrant bounded by the graph of f, the coordinate axes, and

the vertical line x = k, where k > 0. The region R is shown in the figure above.

(a) Write, but do not evaluate, an expression involving an integral that gives the perimeter of R in terms of &

(b) The region R is rotated about the x-axis to form a solid. Find the volume, V, of the solid in terms of k.
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(c) The volume V, found in part (b), changes as k changes. If %— determme% when k —% " ' 4
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